-
1
-
-
0001170506
-
-
L V. Berkner and L. C. Marshall, J Atmos Sci 22, 225 (1965); A Watson, J E Lovelock, L Margulis, Biosystems 10, 293 (1978); T. P. Jones and W. G. Chaloner, Palaeogeogr. Palaeoclimatol. Palaeoecol 77, 39 (1991); J. M. Robinson, ibid., p. 51.
-
(1965)
J Atmos Sci
, vol.22
, pp. 225
-
-
Berkner, L.V.1
Marshall, L.C.2
-
2
-
-
0018244646
-
-
L V. Berkner and L. C. Marshall, J Atmos Sci 22, 225 (1965); A Watson, J E Lovelock, L Margulis, Biosystems 10, 293 (1978); T. P. Jones and W. G. Chaloner, Palaeogeogr. Palaeoclimatol. Palaeoecol 77, 39 (1991); J. M. Robinson, ibid., p. 51.
-
(1978)
Biosystems
, vol.10
, pp. 293
-
-
Watson, A.1
Lovelock, J.E.2
Margulis, L.3
-
3
-
-
0026288055
-
-
L V. Berkner and L. C. Marshall, J Atmos Sci 22, 225 (1965); A Watson, J E Lovelock, L Margulis, Biosystems 10, 293 (1978); T. P. Jones and W. G. Chaloner, Palaeogeogr. Palaeoclimatol. Palaeoecol 77, 39 (1991); J. M. Robinson, ibid., p. 51.
-
(1991)
Palaeogeogr. Palaeoclimatol. Palaeoecol
, vol.77
, pp. 39
-
-
Jones, T.P.1
Chaloner, W.G.2
-
4
-
-
3643085017
-
-
L V. Berkner and L. C. Marshall, J Atmos Sci 22, 225 (1965); A Watson, J E Lovelock, L Margulis, Biosystems 10, 293 (1978); T. P. Jones and W. G. Chaloner, Palaeogeogr. Palaeoclimatol. Palaeoecol 77, 39 (1991); J. M. Robinson, ibid., p. 51.
-
Palaeogeogr. Palaeoclimatol. Palaeoecol
, pp. 51
-
-
Robinson, J.M.1
-
6
-
-
0022236642
-
-
E. T Sundquist and W. S Broecker, Eds American Geophysical Union, Washington. DC
-
2: Natural Vanations Archean to Present, E. T Sundquist and W. S Broecker, Eds (American Geophysical Union, Washington. DC, 1985), pp. 397-411
-
(1985)
2: Natural Vanations Archean to Present
, pp. 397-411
-
-
Lasaga, A.C.1
Bemer, R.A.2
Garrels, R.M.3
-
8
-
-
0022923483
-
-
L. R. Kump and R M. Garrels, Am J. Sci 286, 337 (1986), R. A. Bemer, ibid 287, 177 (1987); L. R. Kump, Nature 335, 152 (1988), R. A. Berner and D. E. Canfield, Am J. Sci 289, 333 (1989), L. R Kump, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, R. Wollest, F. T Mackenzie, L Chou Eds. (Springer-Verlag, Berlin, 1993), pp 475-490.
-
(1986)
Am J. Sci
, vol.286
, pp. 337
-
-
Kump, L.R.1
Garrels, R.M.2
-
9
-
-
0022923483
-
-
L. R. Kump and R M. Garrels, Am J. Sci 286, 337 (1986), R. A. Bemer, ibid 287, 177 (1987); L. R. Kump, Nature 335, 152 (1988), R. A. Berner and D. E. Canfield, Am J. Sci 289, 333 (1989), L. R Kump, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, R. Wollest, F. T Mackenzie, L Chou Eds. (Springer-Verlag, Berlin, 1993), pp 475-490.
-
(1987)
Am J. Sci
, vol.287
, pp. 177
-
-
Bemer, R.A.1
-
10
-
-
0024254658
-
-
L. R. Kump and R M. Garrels, Am J. Sci 286, 337 (1986), R. A. Bemer, ibid 287, 177 (1987); L. R. Kump, Nature 335, 152 (1988), R. A. Berner and D. E. Canfield, Am J. Sci 289, 333 (1989), L. R Kump, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, R. Wollest, F. T Mackenzie, L Chou Eds. (Springer-Verlag, Berlin, 1993), pp 475-490.
-
(1988)
Nature
, vol.335
, pp. 152
-
-
Kump, L.R.1
-
11
-
-
0024856908
-
-
L. R. Kump and R M. Garrels, Am J. Sci 286, 337 (1986), R. A. Bemer, ibid 287, 177 (1987); L. R. Kump, Nature 335, 152 (1988), R. A. Berner and D. E. Canfield, Am J. Sci 289, 333 (1989), L. R Kump, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, R. Wollest, F. T Mackenzie, L Chou Eds. (Springer-Verlag, Berlin, 1993), pp 475-490.
-
(1989)
Am J. Sci
, vol.289
, pp. 333
-
-
Berner, R.A.1
Canfield, D.E.2
-
12
-
-
0022923483
-
-
R. Wollest, F. T Mackenzie, L Chou Eds. Springer-Verlag, Berlin
-
L. R. Kump and R M. Garrels, Am J. Sci 286, 337 (1986), R. A. Bemer, ibid 287, 177 (1987); L. R. Kump, Nature 335, 152 (1988), R. A. Berner and D. E. Canfield, Am J. Sci 289, 333 (1989), L. R Kump, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, R. Wollest, F. T Mackenzie, L Chou Eds. (Springer-Verlag, Berlin, 1993), pp 475-490.
-
(1993)
Interactions of C, N, P and S Biogeochemical Cycles and Global Change
-
-
Kump, L.R.1
-
14
-
-
0001289754
-
-
A C. Redfield, Am. Sci 46, 205 (1958); H D Holland, The Chemistry of the Atmosphere and the Oceans (Wiley-Interscience, New York, 1978); W. S Broecker, Geochim. Cosmochim Acta 46, 1689 (1982). On time scales of days to decades, local nutrient limitation may be complex and temporally variable, with more than one limiting factor being involved in setting the level of net primary production. The productivity of a global ecosystem integrated over a long time, however, will approach the single limiting nutrient end-member situation. Phosphorus is the most likely limiting nutrient for global ocean productivity on geologic time scales, because any long-term nitrogen deficiency can be made up by increased nitrogen fixation from the atmosphere
-
(1958)
Am. Sci
, vol.46
, pp. 205
-
-
Redfield, A.C.1
-
15
-
-
0003609163
-
-
Wiley-Interscience, New York
-
A C. Redfield, Am. Sci 46, 205 (1958); H D Holland, The Chemistry of the Atmosphere and the Oceans (Wiley-Interscience, New York, 1978); W. S Broecker, Geochim. Cosmochim Acta 46, 1689 (1982). On time scales of days to decades, local nutrient limitation may be complex and temporally variable, with more than one limiting factor being involved in setting the level of net primary production. The productivity of a global ecosystem integrated over a long time, however, will approach the single limiting nutrient end-member situation. Phosphorus is the most likely limiting nutrient for global ocean productivity on geologic time scales, because any long-term nitrogen deficiency can be made up by increased nitrogen fixation from the atmosphere
-
(1978)
The Chemistry of the Atmosphere and the Oceans
-
-
Holland, H.D.1
-
16
-
-
0019998670
-
-
A C. Redfield, Am. Sci 46, 205 (1958); H D Holland, The Chemistry of the Atmosphere and the Oceans (Wiley-Interscience, New York, 1978); W. S Broecker, Geochim. Cosmochim Acta 46, 1689 (1982). On time scales of days to decades, local nutrient limitation may be complex and temporally variable, with more than one limiting factor being involved in setting the level of net primary production. The productivity of a global ecosystem integrated over a long time, however, will approach the single limiting nutrient end-member situation. Phosphorus is the most likely limiting nutrient for global ocean productivity on geologic time scales, because any long-term nitrogen deficiency can be made up by increased nitrogen fixation from the atmosphere
-
(1982)
Geochim. Cosmochim Acta
, vol.46
, pp. 1689
-
-
Broecker, W.S.1
-
18
-
-
84879882777
-
-
G. M. Filippelli and M L Delaney, Paleoceanography 9, 643 (1994), K. B Föllmi, Geology 23, 859 (1995).
-
(1995)
Geology
, vol.23
, pp. 859
-
-
Föllmi, K.B.1
-
19
-
-
0027382682
-
-
E. D. Ingall, R. M. Bustin, P. Van Cappellen, Geochim Cosmochim. Acta 57, 303 (1993); E. Ingall and R Jahnke, ibid. 58, 2571 (1994), Mar Geol, in press. In modern depositional environments, benthic chamber flux experiments combined with measured burial rates provide direct evidence for decreased burial efficiencies ot phosphorus when bottom waters are low in oxygen. This is consistent with data from ancient sediments, in which the organic matter preserved in finely laminated shales is found to be strongly depleted in phosphorus relative to that in bioturbated shales of the same sequences.
-
(1993)
Geochim Cosmochim. Acta
, vol.57
, pp. 303
-
-
Ingall, E.D.1
Bustin, R.M.2
Van Cappellen, P.3
-
20
-
-
0028323834
-
-
E. D. Ingall, R. M. Bustin, P. Van Cappellen, Geochim Cosmochim. Acta 57, 303 (1993); E. Ingall and R Jahnke, ibid. 58, 2571 (1994), Mar Geol, in press. In modern depositional environments, benthic chamber flux experiments combined with measured burial rates provide direct evidence for decreased burial efficiencies ot phosphorus when bottom waters are low in oxygen. This is consistent with data from ancient sediments, in which the organic matter preserved in finely laminated shales is found to be strongly depleted in phosphorus relative to that in bioturbated shales of the same sequences.
-
(1994)
Geochim Cosmochim. Acta
, vol.58
, pp. 2571
-
-
Ingall, E.1
Jahnke, R.2
-
21
-
-
0027382682
-
-
in press
-
E. D. Ingall, R. M. Bustin, P. Van Cappellen, Geochim Cosmochim. Acta 57, 303 (1993); E. Ingall and R Jahnke, ibid. 58, 2571 (1994), Mar Geol, in press. In modern depositional environments, benthic chamber flux experiments combined with measured burial rates provide direct evidence for decreased burial efficiencies ot phosphorus when bottom waters are low in oxygen. This is consistent with data from ancient sediments, in which the organic matter preserved in finely laminated shales is found to be strongly depleted in phosphorus relative to that in bioturbated shales of the same sequences.
-
Mar Geol
-
-
-
22
-
-
0028581676
-
-
P. Van Cappellen and E. D. Ingall, Paleoceanography 9, 677 (1994). Global-scale anoxia-dysoxia results in a more efficient recycling of reactive phosphorus in the oceans, and hence higher rates of primary production and organic carbon burial The positive feedback between oxygen depletion of bottom waters and benthic phosphorus regeneration may be one of the mechanisms driving ocean anoxic events.
-
(1994)
Paleoceanography
, vol.9
, pp. 677
-
-
Van Cappellen, P.1
Ingall, E.D.2
-
23
-
-
85069134323
-
-
unpublished data
-
R. Raiswell, unpublished data. The reactive fraction of sedimentary iron is on the order of 20 to 25% in most modern marine depositional environments. Values of up to 70 to 80% are found in certain euxinic environments. On a global basis, sulfide-bound Fe(II) represents 56% of the reactive iron in marine sediments (range. 12 to 85%).
-
-
-
Raiswell, R.1
-
25
-
-
85069141186
-
-
note
-
Data from both modern and ancient marine sediments indicate that the atomic C:P ratios of organic matter buried under completely anoxic bottom waters are at least on the order of 500 to 1000 (9). Here we use a value of 4000, which is the average value for organe matter in laminated Phanerozoic black shales that have not undergone significant late diagenetic alteration We have also shown that ocean productivity is not very sensitive to variations in the anoxic end-member C P ratio, once the latter exceeds 1000 (10)
-
-
-
-
26
-
-
0024568452
-
-
D. E Canfield, Deep Sea Res. 36, 121 (1989); T. K. Tromp, P Van Cappellen, R. M Key, Geochim. Cosmochim. Acta 59, 1259 (1995).
-
(1989)
Deep Sea Res.
, vol.36
, pp. 121
-
-
Canfield, D.E.1
-
27
-
-
0028797382
-
-
D. E Canfield, Deep Sea Res. 36, 121 (1989); T. K. Tromp, P Van Cappellen, R. M Key, Geochim. Cosmochim. Acta 59, 1259 (1995).
-
(1995)
Geochim. Cosmochim. Acta
, vol.59
, pp. 1259
-
-
Tromp, T.K.1
Van Cappellen, P.2
Key, R.M.3
-
28
-
-
84977435075
-
-
J. L Sarmiento, T. D. Herbert, J R Toggweiler, Global Biogeochem. Cycles 2, 115 (1988); T. D Herbert and J. L Sarmient,. Geology 19, 702 (1991)
-
(1988)
Global Biogeochem. Cycles
, vol.2
, pp. 115
-
-
Sarmiento, J.L.1
Herbert, T.D.2
Toggweiler, J.R.3
-
29
-
-
84874964036
-
-
J. L Sarmiento, T. D. Herbert, J R Toggweiler, Global Biogeochem. Cycles 2, 115 (1988); T. D Herbert and J. L Sarmient,. Geology 19, 702 (1991)
-
(1991)
Geology
, vol.19
, pp. 702
-
-
Herbert, T.D.1
Sarmient, J.L.2
-
30
-
-
85069135164
-
-
note
-
2 from the atmosphere For phosphorus, however, there is a lag between terrestrial exposure and delivery to the oceans. Such a lag is not unreasonable, especially in view of the poor correlation between marine phosphorus burial and crustal uplift reported for the past 32 My (8)
-
-
-
-
31
-
-
85069136292
-
-
note
-
2 proposed here. Quantitatively, however, burial of organic P is the more important process.
-
-
-
-
32
-
-
85069131650
-
-
note
-
Supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society (28069-AC2 to P.V.C.), and by NSF (OCE94-15563 to E.I.). We thank R Raiswell for sharing his unpublished results.
-
-
-
|