-
1
-
-
0001778660
-
-
J. H. Oort, Bull. Astron. Inst. Neth. 11, 91 (1950); K. E. Edgeworth, Mon. Not. R. Astron. Soc. 109, 600 (1949); G. P. Kuiper, in Astrophysics: A Topical Symposium, J. A. Hynek, Ed. (McGraw-Hill, New York, 1951), pp. 357-424.
-
(1950)
Bull. Astron. Inst. Neth.
, vol.11
, pp. 91
-
-
Oort, J.H.1
-
2
-
-
0001111391
-
-
J. H. Oort, Bull. Astron. Inst. Neth. 11, 91 (1950); K. E. Edgeworth, Mon. Not. R. Astron. Soc. 109, 600 (1949); G. P. Kuiper, in Astrophysics: A Topical Symposium, J. A. Hynek, Ed. (McGraw-Hill, New York, 1951), pp. 357-424.
-
(1949)
Mon. Not. R. Astron. Soc.
, vol.109
, pp. 600
-
-
Edgeworth, K.E.1
-
3
-
-
0002409230
-
-
J. A. Hynek, Ed. McGraw-Hill, New York
-
J. H. Oort, Bull. Astron. Inst. Neth. 11, 91 (1950); K. E. Edgeworth, Mon. Not. R. Astron. Soc. 109, 600 (1949); G. P. Kuiper, in Astrophysics: A Topical Symposium, J. A. Hynek, Ed. (McGraw-Hill, New York, 1951), pp. 357-424.
-
(1951)
Astrophysics: A Topical Symposium
, pp. 357-424
-
-
Kuiper, G.P.1
-
4
-
-
0002454932
-
-
M. J. Duncan et al., Astrophys. J. Lett. 328, L69 (1988); T. Quinn et al., Astrophys. J. 355, 667 (1990).
-
(1988)
Astrophys. J. Lett.
, vol.328
-
-
Duncan, M.J.1
-
5
-
-
0000854224
-
-
M. J. Duncan et al., Astrophys. J. Lett. 328, L69 (1988); T. Quinn et al., Astrophys. J. 355, 667 (1990).
-
(1990)
Astrophys. J.
, vol.355
, pp. 667
-
-
Quinn, T.1
-
7
-
-
0001704207
-
-
V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Nauka, Moscow, 1969); J. A. Fernandez, Mon. Not. R. Astron. Soc. 192, 481 (1980).
-
(1980)
Mon. Not. R. Astron. Soc.
, vol.192
, pp. 481
-
-
Fernandez, J.A.1
-
8
-
-
0000605637
-
-
A. Milani et al., Eds. Kluwer, Dordrecht, Netherlands
-
H. Rickman, in Asteroids Comets Meteors 1993, A. Milani et al., Eds. (Kluwer, Dordrecht, Netherlands, 1994), pp. 297-312; D. G. Schleicher, ibid., pp. 415-428; S. J. Weidenschilling, Nature 368, 721 (1994).
-
(1994)
Asteroids Comets Meteors 1993
, pp. 297-312
-
-
Rickman, H.1
-
9
-
-
9444242855
-
-
H. Rickman, in Asteroids Comets Meteors 1993, A. Milani et al., Eds. (Kluwer, Dordrecht, Netherlands, 1994), pp. 297-312; D. G. Schleicher, ibid., pp. 415-428; S. J. Weidenschilling, Nature 368, 721 (1994).
-
Asteroids Comets Meteors 1993
, pp. 415-428
-
-
Schleicher, D.G.1
-
10
-
-
0028184486
-
-
H. Rickman, in Asteroids Comets Meteors 1993, A. Milani et al., Eds. (Kluwer, Dordrecht, Netherlands, 1994), pp. 297-312; D. G. Schleicher, ibid., pp. 415-428; S. J. Weidenschilling, Nature 368, 721 (1994).
-
(1994)
Nature
, vol.368
, pp. 721
-
-
Weidenschilling, S.J.1
-
11
-
-
0242442204
-
-
D. Jewitt and J. X. Luu, Nature 362, 730 (1993); Astron. J. 109, 1867 (1995). Updated lists of these objects and their preliminary orbits can be obtained from the Minor Planet Center, which we thank for providing us with these data.
-
(1993)
Nature
, vol.362
, pp. 730
-
-
Jewitt, D.1
Luu, J.X.2
-
12
-
-
0346632015
-
-
D. Jewitt and J. X. Luu, Nature 362, 730 (1993); Astron. J. 109, 1867 (1995). Updated lists of these objects and their preliminary orbits can be obtained from the Minor Planet Center, which we thank for providing us with these data.
-
(1995)
Astron. J.
, vol.109
, pp. 1867
-
-
-
13
-
-
0000600119
-
-
Both analytical theories and numerical integrations indicate that EKO eccentricities and sines of the inclination as high as 0.2 would result in long-term chaotic behavior for most bodies in nonresonant orbits [Z. Knežević, A. Milani, P. Farinella. Ch. Froeschlé, C. Froeschlé, Icarus 93, 316 (1991); A. Morbidelli, F. Thomas, M. Moons, ibid. 118, 322 (1996); M. J. Duncan, H. F. Levison, S. M. Budd Astron. J. 110, 3073 (1995)]. A significant fraction (≈40%) of known (large) EKOs are apparently trapped in stable resonant orbits, particularly the 2:3 mean motion resonance with Neptune. These bodies can have significant eccentricities (0.2 to 0.3) and inclinations (up to ≈25°); however, it is not clear that a significant percentage of all EKOs larger than 1 km in diameter will be similarly located on resonant orbits. Also, we disregard the possibility that EKOs may collisionally interact with a large population of high-eccentricity or high-inclination bodies with semimajor axes > 100 AU and perihelia near 40 AU, as predicted by some models for the formation of the Oort cloud [M. Duncan, T. Quinn, S, Tremaine, Astron. J. 94, 1330 (1987)], because there is currently no observational evidence for the existence of such a population.
-
(1991)
Icarus
, vol.93
, pp. 316
-
-
Knežević, Z.1
Milani, A.2
Farinella, P.3
Froeschlé, Ch.4
Froeschlé, C.5
-
14
-
-
58149324792
-
-
Both analytical theories and numerical integrations indicate that EKO eccentricities and sines of the inclination as high as 0.2 would result in long-term chaotic behavior for most bodies in nonresonant orbits [Z. Knežević, A. Milani, P. Farinella. Ch. Froeschlé, C. Froeschlé, Icarus 93, 316 (1991); A. Morbidelli, F. Thomas, M. Moons, ibid. 118, 322 (1996); M. J. Duncan, H. F. Levison, S. M. Budd Astron. J. 110, 3073 (1995)]. A significant fraction (≈40%) of known (large) EKOs are apparently trapped in stable resonant orbits, particularly the 2:3 mean motion resonance with Neptune. These bodies can have significant eccentricities (0.2 to 0.3) and inclinations (up to ≈25°); however, it is not clear that a significant percentage of all EKOs larger than 1 km in diameter will be similarly located on resonant orbits. Also, we disregard the possibility that EKOs may collisionally interact with a large population of high-eccentricity or high-inclination bodies with semimajor axes > 100 AU and perihelia near 40 AU, as predicted by some models for the formation of the Oort cloud [M. Duncan, T. Quinn, S, Tremaine, Astron. J. 94, 1330 (1987)], because there is currently no observational evidence for the existence of such a population.
-
(1996)
Icarus
, vol.118
, pp. 322
-
-
Morbidelli, A.1
Thomas, F.2
Moons, M.3
-
15
-
-
0029494058
-
-
Both analytical theories and numerical integrations indicate that EKO eccentricities and sines of the inclination as high as 0.2 would result in long-term chaotic behavior for most bodies in nonresonant orbits [Z. Knežević, A. Milani, P. Farinella. Ch. Froeschlé, C. Froeschlé, Icarus 93, 316 (1991); A. Morbidelli, F. Thomas, M. Moons, ibid. 118, 322 (1996); M. J. Duncan, H. F. Levison, S. M. Budd Astron. J. 110, 3073 (1995)]. A significant fraction (≈40%) of known (large) EKOs are apparently trapped in stable resonant orbits, particularly the 2:3 mean motion resonance with Neptune. These bodies can have significant eccentricities (0.2 to 0.3) and inclinations (up to ≈25°); however, it is not clear that a significant percentage of all EKOs larger than 1 km in diameter will be similarly located on resonant orbits. Also, we disregard the possibility that EKOs may collisionally interact with a large population of high-eccentricity or high-inclination bodies with semimajor axes > 100 AU and perihelia near 40 AU, as predicted by some models for the formation of the Oort cloud [M. Duncan, T. Quinn, S, Tremaine, Astron. J. 94, 1330 (1987)], because there is currently no observational evidence for the existence of such a population.
-
(1995)
Astron. J.
, vol.110
, pp. 3073
-
-
Duncan, M.J.1
Levison, H.F.2
Budd, S.M.3
-
16
-
-
0000600119
-
-
Both analytical theories and numerical integrations indicate that EKO eccentricities and sines of the inclination as high as 0.2 would result in long-term chaotic behavior for most bodies in nonresonant orbits [Z. Knežević, A. Milani, P. Farinella. Ch. Froeschlé, C. Froeschlé, Icarus 93, 316 (1991); A. Morbidelli, F. Thomas, M. Moons, ibid. 118, 322 (1996); M. J. Duncan, H. F. Levison, S. M. Budd Astron. J. 110, 3073 (1995)]. A significant fraction (≈40%) of known (large) EKOs are apparently trapped in stable resonant orbits, particularly the 2:3 mean motion resonance with Neptune. These bodies can have significant eccentricities (0.2 to 0.3) and inclinations (up to ≈25°); however, it is not clear that a significant percentage of all EKOs larger than 1 km in diameter will be similarly located on resonant orbits. Also, we disregard the possibility that EKOs may collisionally interact with a large population of high-eccentricity or high-inclination bodies with semimajor axes > 100 AU and perihelia near 40 AU, as predicted by some models for the formation of the Oort cloud [M. Duncan, T. Quinn, S, Tremaine, Astron. J. 94, 1330 (1987)], because there is currently no observational evidence for the existence of such a population.
-
(1987)
Astron. J.
, vol.94
, pp. 1330
-
-
Duncan, M.1
Quinn, T.2
Tremaine, S.3
-
18
-
-
12044260011
-
-
M. J. Holman and J. Wisdom, Astron. J. 105, 1987 (1993); M. J. Duncan et al., ibid. 110, 3073 (1995).
-
(1993)
Astron. J.
, vol.105
, pp. 1987
-
-
Holman, M.J.1
Wisdom, J.2
-
19
-
-
0029494058
-
-
M. J. Holman and J. Wisdom, Astron. J. 105, 1987 (1993); M. J. Duncan et al., ibid. 110, 3073 (1995).
-
(1995)
Astron. J.
, vol.110
, pp. 3073
-
-
Duncan, M.J.1
-
21
-
-
0000559133
-
-
i is the average collision rate per unit of time and per unit of cross-sectional area of the impacting bodies, multiplied by a factor π [G. W. Wetherill, J. Geophys. Res. 72, 2429 (1967)].
-
(1967)
J. Geophys. Res.
, vol.72
, pp. 2429
-
-
Wetherill, G.W.1
-
22
-
-
0001719338
-
-
P. Farinella and D. R. Davis. Icarus 97, 111 (1992); W. F. Bottke et al., ibid. 107, 255 (1994).
-
(1992)
Icarus
, vol.97
, pp. 111
-
-
Farinella, P.1
Davis, D.R.2
-
23
-
-
0001344642
-
-
P. Farinella and D. R. Davis. Icarus 97, 111 (1992); W. F. Bottke et al., ibid. 107, 255 (1994).
-
(1994)
Icarus
, vol.107
, pp. 255
-
-
Bottke, W.F.1
-
25
-
-
0024899424
-
-
R. P. Binzel, T. Gehrels, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson, AZ
-
D. R. Davis et al., in Asteroids II, R. P. Binzel, T. Gehrels, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1989), pp. 805-826.
-
(1989)
Asteroids II
, pp. 805-826
-
-
Davis, D.R.1
-
26
-
-
0001327779
-
-
E. V. Ryan et al., Icarus 94, 283 (1991).
-
(1991)
Icarus
, vol.94
, pp. 283
-
-
Ryan, E.V.1
-
27
-
-
0000534969
-
-
A. Lange and T. J. Ahrens, Lunar Planet. Sci. Conf. XII, 1667 (1981); S. Kawakami et al., J. Geophys. Res. 88, 5806 (1983); M. J. Cintala et al., Lunar Planet. Sci. Conf. XVI, 1298 (1985); M. Arakawa et al., Icarus 118, 341 (1996).
-
(1981)
Lunar Planet. Sci. Conf.
, vol.12
, pp. 1667
-
-
Lange, A.1
Ahrens, T.J.2
-
28
-
-
0020781201
-
-
A. Lange and T. J. Ahrens, Lunar Planet. Sci. Conf. XII, 1667 (1981); S. Kawakami et al., J. Geophys. Res. 88, 5806 (1983); M. J. Cintala et al., Lunar Planet. Sci. Conf. XVI, 1298 (1985); M. Arakawa et al., Icarus 118, 341 (1996).
-
(1983)
J. Geophys. Res.
, vol.88
, pp. 5806
-
-
Kawakami, S.1
-
29
-
-
9444231308
-
-
A. Lange and T. J. Ahrens, Lunar Planet. Sci. Conf. XII, 1667 (1981); S. Kawakami et al., J. Geophys. Res. 88, 5806 (1983); M. J. Cintala et al., Lunar Planet. Sci. Conf. XVI, 1298 (1985); M. Arakawa et al., Icarus 118, 341 (1996).
-
(1985)
Lunar Planet. Sci. Conf.
, vol.16
, pp. 1298
-
-
Cintala, M.J.1
-
30
-
-
0001469427
-
-
A. Lange and T. J. Ahrens, Lunar Planet. Sci. Conf. XII, 1667 (1981); S. Kawakami et al., J. Geophys. Res. 88, 5806 (1983); M. J. Cintala et al., Lunar Planet. Sci. Conf. XVI, 1298 (1985); M. Arakawa et al., Icarus 118, 341 (1996).
-
(1996)
Icarus
, vol.118
, pp. 341
-
-
Arakawa, M.1
-
31
-
-
9444271264
-
-
note
-
1.
-
-
-
-
32
-
-
0014510666
-
-
J. W. Dohnanyi, J. Geophys. Res. 74, 2531 (1969); D. R. Williams and G. W. Wetherill, Icarus 107, 117 (1994).
-
(1969)
J. Geophys. Res.
, vol.74
, pp. 2531
-
-
Dohnanyi, J.W.1
-
33
-
-
0000405648
-
-
J. W. Dohnanyi, J. Geophys. Res. 74, 2531 (1969); D. R. Williams and G. W. Wetherill, Icarus 107, 117 (1994).
-
(1994)
Icarus
, vol.107
, pp. 117
-
-
Williams, D.R.1
Wetherill, G.W.2
-
35
-
-
0001096336
-
-
P. Farinella et al., Icarus 52, 409 (1982).
-
(1982)
Icarus
, vol.52
, pp. 409
-
-
Farinella, P.1
-
36
-
-
58149324792
-
-
Several mean motion and secular resonances with Uranus and Neptune are present in the E-K Belt and are associated with chaotic dynamics leading to planet-crossing comet-type orbits [A. Morbidelli et al., ibid. 118, 322 (1996); M. J. Duncan et al., Astron. J. 110, 3073 (1995)].
-
(1996)
Icarus
, vol.118
, pp. 322
-
-
Morbidelli, A.1
-
37
-
-
0029494058
-
-
Several mean motion and secular resonances with Uranus and Neptune are present in the E-K Belt and are associated with chaotic dynamics leading to planet-crossing comet-type orbits [A. Morbidelli et al., ibid. 118, 322 (1996); M. J. Duncan et al., Astron. J. 110, 3073 (1995)].
-
(1995)
Astron. J.
, vol.110
, pp. 3073
-
-
Duncan, M.J.1
-
38
-
-
43949148386
-
-
H. F. Levison et al., Icarus 108, 18 (1994).
-
(1994)
Icarus
, vol.108
, pp. 18
-
-
Levison, H.F.1
-
39
-
-
0001672110
-
-
D. Jewitt and K. Meech, Astrophys. J. 328, 974 (1988). For a comparison between shapes of asteroids and fragments from hypervelocity impacts, see V. Catullo et al., Astron. Astrophys. 138, 464 (1984).
-
(1988)
Astrophys. J.
, vol.328
, pp. 974
-
-
Jewitt, D.1
Meech, K.2
-
40
-
-
0001558628
-
-
D. Jewitt and K. Meech, Astrophys. J. 328, 974 (1988). For a comparison between shapes of asteroids and fragments from hypervelocity impacts, see V. Catullo et al., Astron. Astrophys. 138, 464 (1984).
-
(1984)
Astron. Astrophys.
, vol.138
, pp. 464
-
-
Catullo, V.1
-
42
-
-
9444267294
-
-
note
-
P. F. acknowledges financial support from the Italian Space Agency (ASI) and the Italian Ministry for University and Scientific Research (MURST). We are grateful to C. Chapman, H. Levison, F. Marzari, A. Milani, A. Stern, S. J. Weidenschilling, and D. E. Wheeler for useful discussions and comments. This is PSI contribution no. 334.
-
-
-
|