-
2
-
-
84979185457
-
Longitudinal and transverse diffusion in granular deposits
-
De Josselin de Jong, G.: 1958, Longitudinal and transverse diffusion in granular deposits, Trans. Amer. Geophys. Union, 39, 67-74.
-
(1958)
Trans. Amer. Geophys. Union
, vol.39
, pp. 67-74
-
-
De Josselin De Jong, G.1
-
3
-
-
0023437985
-
Hyperbolic heat conduction with radiation in an absorbing and emitting medium
-
Glass, D. E. Özisik, M. N., and McRae, D. S.: 1987, Hyperbolic heat conduction with radiation in an absorbing and emitting medium, Numer. Heat Transfer 12, 321-333.
-
(1987)
Numer. Heat Transfer
, vol.12
, pp. 321-333
-
-
Glass, D.E.1
Özisik, M.N.2
McRae, D.S.3
-
4
-
-
0022875577
-
Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws
-
Hassanizadeh, S. M.: 1986a, Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws, Adv. Water Resour. 9, 196-206.
-
(1986)
Adv. Water Resour.
, vol.9
, pp. 196-206
-
-
Hassanizadeh, S.M.1
-
5
-
-
0022889104
-
Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws
-
Hassanizadeh, S. M.: 1986b, Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour. 9, 207-222.
-
(1986)
Adv. Water Resour.
, vol.9
, pp. 207-222
-
-
Hassanizadeh, S.M.1
-
6
-
-
0029508712
-
A Non-linear theory of high-concentration-gradient dispersion in porous media
-
Hassanizadeh, S. M. and Leijnse, A.: 1995, A Non-linear theory of high-concentration-gradient dispersion in porous media, Adv. Water Resour. 18, 203-215.
-
(1995)
Adv. Water Resour.
, vol.18
, pp. 203-215
-
-
Hassanizadeh, S.M.1
Leijnse, A.2
-
7
-
-
0003524611
-
-
PhD Thesis, Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands, 1994
-
Maas, C.: 1994, On convolutional processes and dispersive groundwater flow. PhD Thesis, Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands, 1994.
-
(1994)
On Convolutional Processes and Dispersive Groundwater Flow
-
-
Maas, C.1
-
8
-
-
0019145640
-
Is transport in porous media always diffusive? A counter example
-
Matheron, G. and De Marsily, G.: 1980, Is transport in porous media always diffusive? A counter example, Water Resour. Res. 16, 901-917.
-
(1980)
Water Resour. Res.
, vol.16
, pp. 901-917
-
-
Matheron, G.1
De Marsily, G.2
-
9
-
-
0019763410
-
Transport in structured porous media
-
A. Verruijt and F. Borends (eds)
-
Raats, P. A. C.: 1981, Transport in structured porous media, in A. Verruijt and F. Borends (eds), Proceedings of Euromech 143, pp. 221-226.
-
(1981)
Proceedings of Euromech 143
, pp. 221-226
-
-
Raats, P.A.C.1
-
10
-
-
0012379609
-
Typical solutions of the differential equations of statistical theories of flow through porous media
-
Scheidegger, A. E.: 1958, Typical solutions of the differential equations of statistical theories of flow through porous media, Trans. Amer. Geoplrys. Union 39, 929-932.
-
(1958)
Trans. Amer. Geoplrys. Union
, vol.39
, pp. 929-932
-
-
Scheidegger, A.E.1
-
12
-
-
0027063579
-
A mathematical model for dispersion with a moving front in groundwater
-
Strack, O. D. L.: 1992, A mathematical model for dispersion with a moving front in groundwater, Water Resour. Res. 28, 2973-2980.
-
(1992)
Water Resour. Res.
, vol.28
, pp. 2973-2980
-
-
Strack, O.D.L.1
-
13
-
-
0024250249
-
On a new functional form for the dispersive flux in porous media
-
Tompson, A. F. B.: 1988, On a new functional form for the dispersive flux in porous media, Water Resour. Res. 24, 1939-1947.
-
(1988)
Water Resour. Res.
, vol.24
, pp. 1939-1947
-
-
Tompson, A.F.B.1
-
14
-
-
0022715173
-
A second-order approach for the modeling of dispersive transport in porous media, 1. Theoretical development
-
Tompson, A. F. B. and Gray, W. G.: 1986, A second-order approach for the modeling of dispersive transport in porous media, 1. Theoretical development, Water Resour. Res. 22, 591-599.
-
(1986)
Water Resour. Res.
, vol.22
, pp. 591-599
-
-
Tompson, A.F.B.1
Gray, W.G.2
|