-
1
-
-
0016129803
-
A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
-
Nov.
-
R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE, vol. 62, 1448-1461, Nov. 1974.
-
(1974)
Proc. IEEE
, vol.62
-
-
Kouyoumjian, R.G.1
Pathak, P.H.2
-
2
-
-
84980076596
-
Diffraction and reflection of pulses by wedges and corners
-
June
-
J. B. Keller and A. Blank, “Diffraction and reflection of pulses by wedges and corners,” Comm. Pure Appl. Math., vol. 4, pp. 75-94, June 1951.
-
(1951)
Comm. Pure Appl. Math.
, vol.4
, pp. 75-94
-
-
Keller, J.B.1
Blank, A.2
-
3
-
-
0004051413
-
-
Cambridge: Cambridge Univ. Press
-
F. G. Friedlander, Sound Pulses. Cambridge: Cambridge Univ. Press, 1958.
-
(1958)
Sound Pulses.
-
-
Friedlander, F.G.1
-
5
-
-
3943094529
-
Propagation and diffraction of transient fields in non-dispersive and dispersive media
-
L. B. Felsen, “Propagation and diffraction of transient fields in non-dispersive and dispersive media,” in Transient Electromagnetic Fields, L. B. Felsen, Ed. New York: Springer-Verlag, 1976.
-
(1976)
Transient Electromagnetic Fields
-
-
Felsen, L.B.1
-
6
-
-
0016037139
-
Diffraction of the pulsed field from an arbitrarily oriented electric or magnetic dipole by a perfectly conducting wedge
-
Mar.
-
“Diffraction of the pulsed field from an arbitrarily oriented electric or magnetic dipole by a perfectly conducting wedge,” SIAM J. Appl. Math, vol. 26, pp. 306-312, Mar. 1974.
-
(1974)
SIAM J. Appl. Math
, vol.26
, pp. 306-312
-
-
-
7
-
-
0028543255
-
Transient image theory for 2-D and 3-D conducting wedge problems
-
Nov.
-
K. I. Nikoskinen, M. E. Ermutlu, and I. V. Lindell, “Transient image theory for 2-D and 3-D conducting wedge problems,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1515-1520, Nov. 1994.
-
(1994)
IEEE Trans. Antennas Propagat.
, vol.42
, pp. 1515-1520
-
-
Nikoskinen, K.I.1
Ermutlu, M.E.2
Lindell, I.V.3
-
8
-
-
0028447234
-
Pulsed field diffraction by a perfectly conducting wedge: A spectral theory of transients analysis
-
June
-
R. Ianconescu and E. Heyman, “Pulsed field diffraction by a perfectly conducting wedge: A spectral theory of transients analysis,” IEEE Trans. Antennas Propagat., vol. 42, pp. 781-789, June 1994.
-
(1994)
IEEE Trans. Antennas Propagat.
, vol.42
, pp. 781-789
-
-
Ianconescu, R.1
Heyman, E.2
-
9
-
-
0023170317
-
Weakly dispersive spectral theory of transients (STT), Part I: Formulation and interpretation
-
Jan.
-
E. Heyman and L. B. Felsen, “Weakly dispersive spectral theory of transients (STT), Part I: Formulation and interpretation,” IEEE Trans. Antennas Propagat., vol. AP-35, 80-86, Jan. 1987.
-
(1987)
IEEE Trans. Antennas Propagat.
, vol.AP-35
-
-
Heyman, E.1
Felsen, L.B.2
-
10
-
-
0023344563
-
Weakly dispersive spectral theory of transients (STT), Part II: Evaluation of the spectral integral
-
May
-
“Weakly dispersive spectral theory of transients (STT), Part II: Evaluation of the spectral integral,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 574-580, May 1987.
-
(1987)
IEEE Trans. Antennas Propagat.
, vol.AP-35
, pp. 574-580
-
-
-
11
-
-
0023670031
-
Weakly dispersive spectral theory of transients (STT), Part III: Applications
-
Nov.
-
E. Heyman, “Weakly dispersive spectral theory of transients (STT), Part III: Applications,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1258-1987, Nov. 1987.
-
(1987)
IEEE Trans. Antennas Propagat.
, vol.AP-35
, pp. 1258-1987
-
-
Heyman, E.1
-
12
-
-
0028517244
-
Pulsed field diffraction by a perfectly conducting wedge: Exact solution
-
Oct.
-
R. Ianconescu and E. Heyman, “Pulsed field diffraction by a perfectly conducting wedge: Exact solution,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1377-1385, Oct. 1994.
-
(1994)
IEEE Trans. Antennas Propagat.
, vol.42
, pp. 1377-1385
-
-
Ianconescu, R.1
Heyman, E.2
-
13
-
-
0029308489
-
Pulsed field diffraction by a perfectly conducting wedge: Local scattering models
-
May
-
E. Heyman and R. Ianconescu, “Pulsed field diffraction by a perfectly conducting wedge: Local scattering models,” IEEE Trans. Antennas Propagat., vol. 43, pp. 519-528, May 1995.
-
(1995)
IEEE Trans. Antennas Propagat.
, vol.43
, pp. 519-528
-
-
Heyman, E.1
Ianconescu, R.2
-
14
-
-
0025517002
-
Time domain version of the uniform GTD
-
Nov.
-
T. W. Veruttipong, “Time domain version of the uniform GTD,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1757-1764, Nov. 1990.
-
(1990)
IEEE Trans. Antennas Propagat.
, vol.38
, pp. 1757-1764
-
-
Veruttipong, T.W.1
-
15
-
-
28644437313
-
The early-time response of currents and charges induced on perfectly-conducting wedges by transient waves
-
(Veruttipong) Master’s thesis, Ohio State Univ., Columbus, OH
-
T. Jirapunth (Veruttipong), “The early-time response of currents and charges induced on perfectly-conducting wedges by transient waves,” Master’s thesis, Dept. Elec. Eng., Ohio State Univ., Columbus, OH, 1979.
-
(1979)
Dept. Elec. Eng
-
-
Jirapunth, T.1
-
16
-
-
28644451469
-
Early-time responses of currents and charges on wedges and strips
-
(Veruttipong)
-
T. Jirapunth (Veruttipong) and R. G. Kouyoumjian, “Early-time responses of currents and charges on wedges and strips,” in APS Symp. Dig., vol. 2, pp. 590-593, IEEE Ant. Prop. Soc., 1979. Presented at 1979 IEEE APS Symp.
-
(1979)
APS Symp. Dig.
, vol.2
, pp. 590-593
-
-
Jirapunth, T.1
Kouyoumjian, R.G.2
-
17
-
-
0026743748
-
High-frequency techniques for antenna analysis
-
Jan.
-
P. H. Pathak, “High-frequency techniques for antenna analysis,” Proc. IEEE, vol. 80, pp. 44-65, Jan. 1992.
-
(1992)
Proc. IEEE
, vol.80
, pp. 44-65
-
-
Pathak, P.H.1
-
18
-
-
84941608083
-
Techniques for high frequency problems
-
“Techniques for high frequency problems,” in Antenna Handbook: Theory, Application and Design, Y. T. Lo and S. W. Lee, Eds. New York: Van Nostrand Reinhold, 1988, chap. 4.
-
(1988)
Antenna Handbook: Theory
-
-
-
23
-
-
0003438193
-
-
New York: Bateman Manuscript Project, McGraw-Hill
-
A. Erdelyi, Ed., Tables of Integral Transforms.New York: Bateman Manuscript Project, McGraw-Hill, 1954.
-
(1954)
Tables of Integral Transforms.
-
-
Erdelyi, A.1
|