-
2
-
-
0027875487
-
Application of time-frequency analysis to machinery condition assessment
-
Nov.
-
R. A. Rohrbaugh, “Application of time-frequency analysis to machinery condition assessment,” in Proc. 27th Asilomar Conf. Signals Syst. Comput., Nov. 1993.
-
(1993)
Proc. 27th Asilomar Conf. Signals Syst. Comput.
-
-
Rohrbaugh, R.A.1
-
4
-
-
85044760597
-
Applications of time-frequency and time-scale representations to fault detection and classification
-
T. Brotherton, T. Pollard, and D. Jones, “Applications of time-frequency and time-scale representations to fault detection and classification,” in Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal., 1992, pp. 95-98.
-
(1992)
Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal.
, pp. 95-98
-
-
Brotherton, T.1
Pollard, T.2
Jones, D.3
-
5
-
-
0028706728
-
A multiscale stochastic modeling approach to the monitoring of mechanical systems
-
K. C. Chou and L. P. Heck, “A multiscale stochastic modeling approach to the monitoring of mechanical systems,” in Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal., 1994, pp. 25-27.
-
(1994)
Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal.
, pp. 25-27
-
-
Chou, K.C.1
Heck, L.P.2
-
6
-
-
0028698335
-
Fault detection and identification using real-time wavelet feature extraction
-
J. E. Lopez, R. R. Tenney, and J. C. Deckert, “Fault detection and identification using real-time wavelet feature extraction,” in Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal., 1994, pp. 217-220.
-
(1994)
Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal.
, pp. 217-220
-
-
Lopez, J.E.1
Tenney, R.R.2
Deckert, J.C.3
-
7
-
-
0026388214
-
Resolution advantages of quadratic signal processing
-
L. E. Atlas, J. Fang, P. Loughlin, and W. Music, “Resolution advantages of quadratic signal processing,” in Advanced Signal-Processing Algorithms, Architectures and Implementation II, F. T. Luk, Ed., Proc. SPIE, vol. 1566, pp. 134-143, 1991.
-
(1991)
Advanced Signal-Processing Algorithms
, vol.1566
, pp. 134-143
-
-
Atlas, L.E.1
Fang, J.2
Loughlin, P.3
Music, W.4
-
9
-
-
0027851417
-
Quadratic detectors for noise-immune detection of modulated signals
-
Nov.
-
J. Fang and L. E. Atlas, “Quadratic detectors for noise-immune detection of modulated signals,” in Proc. 27th Asilomar Conf. Signals, Syst., Comput., Nov. 1993.
-
(1993)
Proc. 27th Asilomar Conf. Signals
-
-
Fang, J.1
Atlas, L.E.2
-
11
-
-
29144484208
-
Advantages of cascaded quadratic detectors for analysis of manufacturing sensor data
-
J. Fang, L. Atlas, and G. Bernard, “Advantages of cascaded quadratic detectors for analysis of manufacturing sensor data,” in Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal., Victoria, Canada, 1992, pp. 345-348.
-
(1992)
Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal.
, pp. 345-348
-
-
Fang, J.1
Atlas, L.2
Bernard, G.3
-
12
-
-
0024705330
-
Time-frequency distributions—A review
-
July
-
L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE, vol. 77, no. 7, pp. 941-981, July. 1989.
-
(1989)
Proc. IEEE
, vol.77
, Issue.7
, pp. 941-981
-
-
Cohen, L.1
-
13
-
-
0024073129
-
A time-frequency formulation of optimum detection
-
Sept.
-
P. Flandrin, “A time-frequency formulation of optimum detection,” IEEE Trans. Signal Processing, vol. 36, pp. 1377-1384, Sept. 1988.
-
(1988)
IEEE Trans. Signal Processing
, vol.36
, pp. 1377-1384
-
-
Flandrin, P.1
-
14
-
-
0025445621
-
Wide-band proportional-bandwidth Wigner-Ville analysis
-
June
-
R. A. Altes, “Wide-band proportional-bandwidth Wigner-Ville analysis,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 1005-1012, June 1990.
-
(1990)
IEEE Trans. Acoust.
, vol.38
, pp. 1005-1012
-
-
Altes, R.A.1
-
15
-
-
0028727318
-
The use of hyperbolic time-frequency representations for optimum detection and parameter estimation of hyperbolic chirps
-
A. Papandreau, S. M. Kay, and G. F. Boudreaux-Bartels, “The use of hyperbolic time-frequency representations for optimum detection and parameter estimation of hyperbolic chirps,” in Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal., 1994, pp. 369-372.
-
(1994)
Proc. IEEE Int. Symp. Time-Frequency Time-Scale Anal.
, pp. 369-372
-
-
Papandreau, A.1
Kay, S.M.2
Boudreaux-Bartels, G.F.3
-
16
-
-
0019004026
-
Detection, estimation and classification with spectrograms
-
Apr.
-
R. A. Altes, “Detection, estimation and classification with spectrograms,” J. Acoust. Soc. Amer., vol. 67, no. 4, pp. 1232-1246, Apr. 1980.
-
(1980)
J. Acoust. Soc. Amer.
, vol.67
, Issue.4
, pp. 1232-1246
-
-
Altes, R.A.1
-
18
-
-
85011617340
-
From wavelets to time-scale energy distributions
-
P. Flandrin and P. Gonçalvès, “From wavelets to time-scale energy distributions,” in Recent Advances in Wavelet Analysis, L. L. Schumaker and G. Webb, Ed. New York: Academic, 1994, pp. 309-334.
-
(1994)
Recent Advances in Wavelet Analysis
, pp. 309-334
-
-
Flandrin, P.1
Gonçalvès, P.2
-
21
-
-
0023978010
-
Optimal linear-quadratic systems for detection and estimation
-
Mar.
-
B. Picinbono and P. Duvaut, “Optimal linear-quadratic systems for detection and estimation,” IEEE Trans. Inform. Theory, vol. 43, pp. 304-311, Mar. 1988.
-
(1988)
IEEE Trans. Inform. Theory
, vol.43
, pp. 304-311
-
-
Picinbono, B.1
Duvaut, P.2
-
22
-
-
0005473713
-
Optimum quadratic detection of a random vector in Gaussian noise
-
Dec.
-
C. R. Baker, “Optimum quadratic detection of a random vector in Gaussian noise,” IEEE Trans. Commun. Technol., vol. COM-14, pp. 802-805, Dec. 1966.
-
(1966)
IEEE Trans. Commun. Technol.
, vol.COM-14
, pp. 802-805
-
-
Baker, C.R.1
-
24
-
-
0007375021
-
Probability density functionals and reproducing kernel Hilbert spaces
-
E. Parzen, “Probability density functionals and reproducing kernel Hilbert spaces,” in Time Series Analysis, M. Rosenblatt, Ed. New York: Wiley, 1963, pp. 155-169.
-
(1963)
Time Series Analysis
, pp. 155-169
-
-
Parzen, E.1
-
25
-
-
0026062230
-
Quadratic detection of signals with drifting phase
-
Feb.
-
V. V. Veeravalli and H. V. Poor, “Quadratic detection of signals with drifting phase,” J. Acoust. Soc. Amer., vol. 89, no. 2, pp. 811-819, Feb. 1991.
-
(1991)
J. Acoust. Soc. Amer.
, vol.89
, Issue.2
, pp. 811-819
-
-
Veeravalli, V.V.1
Poor, H.V.2
-
26
-
-
0019054579
-
The Wigner distribution—A tool for time-frequency signal analysis—Part I: Continuous-time signals
-
T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—A tool for time-frequency signal analysis—Part I: Continuous-time signals,” Phillips J. Res., vol. 35, no. 3, pp. 217-250, 1980.
-
(1980)
Phillips J. Res.
, vol.35
, Issue.3
, pp. 217-250
-
-
Claasen, T.A.C.M.1
Mecklenbrauker, W.F.G.2
-
27
-
-
0026899936
-
Time-scale distributions: A general class extending the wavelet transform
-
May
-
O. Rioul and P. Flandrin, “Time-scale distributions: A general class extending the wavelet transform,” IEEE Trans. Signal Processing, vol. 46, pp. 1746-1757, May 1992.
-
(1992)
IEEE Trans. Signal Processing
, vol.46
, pp. 1746-1757
-
-
Rioul, O.1
Flandrin, P.2
-
29
-
-
0026938327
-
Time-frequency signal processing based on the Wigner-Weyl framework
-
Oct.
-
W. Kozek, “Time-frequency signal processing based on the Wigner-Weyl framework,” Signal Processing, vol. 29, no. 1, pp. 77-92, Oct. 1992.
-
(1992)
Signal Processing
, vol.29
, Issue.1
, pp. 77-92
-
-
Kozek, W.1
-
30
-
-
0028378193
-
The Weyl correspondence and time-frequency analysis
-
Feb.
-
R. G. Shenoy and T. W. Parks, “The Weyl correspondence and time-frequency analysis,” IEEE Trans. Signal Processing, vol. 42, pp. 318-332, Feb. 1994.
-
(1994)
IEEE Trans. Signal Processing
, vol.42
, pp. 318-332
-
-
Shenoy, R.G.1
Parks, T.W.2
-
32
-
-
0003423822
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
H. Stark and J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers. Englewood Cliffs, NJ: Prentice-Hall, 1986.
-
(1986)
Probability, Random Processes, and Estimation Theory for Engineers.
-
-
Stark, H.1
Woods, J.W.2
-
33
-
-
0029253536
-
Wide-band ambiguity functions and affine Wigner distributions
-
R. G. Shenoy and T. W. Parks, “Wide-band ambiguity functions and affine Wigner distributions,” Signal Processing, vol. 41, no. 3, 1995.
-
(1995)
Signal Processing
, vol.41
, Issue.3
-
-
Shenoy, R.G.1
Parks, T.W.2
-
35
-
-
0022214129
-
Wigner-Ville spectral analysis of nonstationary processes
-
Dec.
-
W. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 1461-1470, Dec. 1985.
-
(1985)
IEEE Trans. Acoust.
, vol.ASSP-33
, pp. 1461-1470
-
-
Martin, W.1
Flandrin, P.2
-
36
-
-
77955326733
-
Characterization of randomly time-variant linear channels
-
P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. CS-11, pp. 360-393, 1963.
-
(1963)
IEEE Trans. Commun. Syst.
, vol.CS-11
, pp. 360-393
-
-
Bello, P.A.1
-
38
-
-
84944998680
-
Integral transforms covariant to unitary operators and their implications for joint signal representations
-
A. M. Sayeed and D. L. Jones, “Integral transforms covariant to unitary operators and their implications for joint signal representations,” to appear in IEEE Trans. Signal Processing.
-
to appear in IEEE Trans. Signal Processing.
-
-
Sayeed, A.M.1
Jones, D.L.2
|