메뉴 건너뛰기




Volumn 6, Issue 5, 1995, Pages 1212-1228

Gradient Calculations for Dynamic Recurrent Neural Networks: A Survey

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; LEARNING SYSTEMS; VECTORS;

EID: 0029375851     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.410363     Document Type: Article
Times cited : (440)

References (149)
  • 1
    • 84946245750 scopus 로고
    • The appeal of parallel distributed processing
    • J. L. McClelland, D. E. Rumelhart, and G. E. Hinton, “The appeal of parallel distributed processing.” in D. E. Rumelhart, J. L. McClelland, and the PDP research group, Eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations. MA: MIT 1986.
    • (1986) D. E. Rumelhart
    • McClelland, J.L.1    Rumelhart, D.E.2    Hinton, G.E.3
  • 2
    • 0017119752 scopus 로고
    • Cooperative computation of stereo disparity
    • D. Marr and T. Poggio, “Cooperative computation of stereo disparity,” Sci., vol. 194, pp. 283-287, 1976.
    • (1976) Sci. , vol.194 , pp. 283-287
    • Marr, D.1    Poggio, T.2
  • 3
    • 84946244053 scopus 로고
    • Analysis of a cooperative stereo Biol. vol. 28, 1978
    • G. Marr, D. Palm, and T. Poggio, “Analysis of a cooperative stereo Biol. vol. 28, 1978.
    • (1978) , vol.28
    • Marr, G.1    Palm, D.2    Poggio, T.3
  • 4
    • 26444546351 scopus 로고
    • Relaxation and its role in vision
    • G. E. Hinton, “Relaxation and its role in vision,” Ph.D. dissertation, Univ. 1977.
    • (1977) Ph.D. dissertation
    • Hinton, G.E.1
  • 5
    • 0019597414 scopus 로고
    • Cooperating processes for low-level vision: A Intell., vol. 1981
    • L. S. Davis and A. Rosenfeld, “Cooperating processes for low-level vision: A Intell., vol. 1981.
    • (1981) , vol.1981
    • Davis, L.S.1    Rosenfeld, A.2
  • 8
    • 34248867021 scopus 로고
    • Massively parallel parsing: A strongly interactive model of natural language interpretation
    • D. L. Waltz and J. B. Pollack, “Massively parallel parsing: A strongly interactive model of natural language interpretation,” Cognitive Sci., vol. 9, pp. 51-74, 1985.
    • (1985) Cognitive Sci. , vol.9 , pp. 51-74
    • Waltz, D.L.1    Pollack, J.B.2
  • 9
    • 0012545485 scopus 로고
    • Learning to solve random-dot stereograms of dense and transparent surfaces with recurrent backpropagation
    • N. Qian and T. J. Sejnowski, “Learning to solve random-dot stereograms of dense and transparent surfaces with recurrent backpropagation,” in Proc. 1988 Connectionist Models Summer School, D. S. Touretzky, G. E. Hinton, and T. J. Eds., 1989, 435-443.
    • (1989) Proc. 1988 Connectionist Models Summer School
    • Qian, N.1    Sejnowski, T.J.2
  • 10
    • 0001382203 scopus 로고
    • Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms
    • O. Nerrand, P. Roussel-Ragot, G. D. L. Personnaz, and S. Marcos, “Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms,” Neural Computa., vol. 5, no. 2, pp. 165-197, 1993.
    • (1993) Neural Computa. , vol.5 , Issue.2 , pp. 165-197
    • Nerrand, O.1    Roussel-Ragot, P.2    Personnaz, G.D.L.3    Marcos, S.4
  • 12
    • 0025331805 scopus 로고
    • Complete gradient optimization of a recurrent network applied to BDG discrimination
    • Mar.
    • R. L. Watrous, B. Laedendorf, and G. M. Kuhn, “Complete gradient optimization of a recurrent network applied to BDG discrimination,” J Acoustical Soc. Amer., vol. 87, no. 3, 1301-1309, Mar. 1990.
    • (1990) J Acoustical Soc. Amer. , vol.87 , Issue.3
    • Watrous, R.L.1    Laedendorf, B.2    Kuhn, G.M.3
  • 14
    • 85132029423 scopus 로고    scopus 로고
    • Word recognition with recurrent network automata
    • D. Albesano, R. Gemello, and F, Mana, “Word recognition with recurrent network automata,” in Proc. IJCNN '92, Baltimore, pp. 308-313.
    • Proc. IJCNN '92 , pp. 308-313
    • Albesano, D.1    Gemello, R.2    Mana, F.3
  • 15
    • 0003758152 scopus 로고
    • A dynamic neural network model of sensorimotor transformations in the leech
    • S. R. Lockery, Y. Fang, and T. J. Sejnowski, “A dynamic neural network model of sensorimotor transformations in the leech,” Neural Computa., vol. 2, no. 3, 274-282, 1990.
    • (1990) Neural Computa. , vol.2 , Issue.3
    • Lockery, S.R.1    Fang, Y.2    Sejnowski, T.J.3
  • 16
    • 84946245462 scopus 로고
    • Mapping between neural and physical activities of the lobster gastric mill system
    • K. Doya, M. E. T. Boyle, and A. I. Selverston, “Mapping between neural and physical activities of the lobster gastric mill system,” in Advances in Neural Information Processing Systems 5, S. J. Hanson, Jack D. Cowan, and C. Lee Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 913-920.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 913-920
    • Doya, K.1    Boyle, M.E.T.2    Selverston, A.I.3
  • 17
    • 84919596539 scopus 로고
    • A Hodgkin-Huxley type neuron model that learns slow nonspike oscillation
    • K. Doya, A. I. Selverston, and P. F. Rowat, “A Hodgkin-Huxley type neuron model that learns slow nonspike oscillation,” in Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994.
    • (1994) Advances in Neural Information Processing Systems 6
    • Doya, K.1    Selverston, A.I.2    Rowat, P.F.3
  • 19
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • P. R. Gorman and T, J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets,” Neural Networks, vol. 1, no. 1, pp. 75-89, 1988.
    • (1988) Neural Networks , vol.1 , Issue.1 , pp. 75-89
    • Gorman, P.R.1    Sejnowski, T.J.2
  • 20
    • 84946244710 scopus 로고
    • The development of the time-delay neural network architecture for speech recognition
    • Nov.
    • K. Lang and G. Hinton, “The development of the time-delay neural network architecture for speech recognition,” Dep. Comput. Sci., Carnegie Mellon Univ., Tech. Rep. CMU-CS-88-152, Nov. 1988.
    • (1988) Dep. Comput. Sci.
    • Lang, K.1    Hinton, G.2
  • 21
    • 0024634603 scopus 로고
    • Phoneme recognition using time-delay networks
    • A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, “Phoneme recognition using time-delay networks,” IEEE Trans. Acoustics, Speech, Signal Process., vol. 37, no. 3, pp. 328-339, 1989.
    • (1989) IEEE Trans. Acoustics , vol.37 , Issue.3 , pp. 328-339
    • Waibel, A.1    Hanazawa, T.2    Hinton, G.3    Shikano, K.4    Lang, K.5
  • 22
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • K. J. Lang, G. E. Hinton, and A. Waibel, “A time-delay neural network architecture for isolated word recognition,” Neural Networks, vol. 3, no. 23-43, 1990.
    • (1990) Neural Networks , vol.3 , Issue.23
    • Lang, K.J.1    Hinton, G.E.2    Waibel, A.3
  • 23
    • 0040409547 scopus 로고
    • Dimensionality reduction and prior knowledge in e-set recognition
    • K. J. Lang and G. E. Hinton, “Dimensionality reduction and prior knowledge in e-set recognition,” in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 178-185.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 178-185
    • Lang, K.J.1    Hinton, G.E.2
  • 24
    • 0001510011 scopus 로고
    • Concentrating information in time: Analog neural networks with applications to speech recognition problems
    • June
    • D. W. Tank and J. J. Hopfield, “Concentrating information in time: Analog neural networks with applications to speech recognition problems,” in Proc. IEEE 1st Int. Conf. Neural Networks, San Diego, CA, June 21-24 1987, 455—468.
    • (1987) Proc. IEEE 1st Int. Conf. Neural Networks
    • Tank, D.W.1    Hopfield, J.J.2
  • 25
    • 0027553120 scopus 로고
    • Continuous-time temporal backpropagation with adaptable time delays
    • S. P. Day and M. R. Davenport, “Continuous-time temporal backpropagation with adaptable time delays,” IEEE Trans. Neural Networks, vol. 4, no. 2, 348-354, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.2
    • Day, S.P.1    Davenport, M.R.2
  • 27
    • 84946244500 scopus 로고
    • number 1294 in APIE Proceedings Series, Orlando, FL, Apr. 18-20
    • Applications of Artificial Neural Networks, number 1294 in APIE Proceedings Series, Orlando, FL, Apr. 18-20, 1990.
    • (1990) Applications of Artificial Neural Networks
  • 28
  • 30
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • A. D. Back and A. C. Tsoi, “FIR and IIR synapses, a new neural network architecture for time series modeling,” Neural Computa., vol. 3, no. 3, pp. 337-350, 1991.
    • (1991) Neural Computa. , vol.3 , Issue.3 , pp. 337-350
    • Back, A.D.1    Tsoi, A.C.2
  • 32
    • 85032752004 scopus 로고
    • Progress in supervised neural networks
    • D. Hush and B. Horne, “Progress in supervised neural networks,” IEEE Signal Process. Mag., vol. 10, no. 1, pp. 8-39, 1993.
    • (1993) IEEE Signal Process. Mag. , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.1    Horne, B.2
  • 33
    • 0026895542 scopus 로고
    • The gamma model—A new neural network for temporal processing
    • B. de Vries and J. Principe, “The gamma model—A new neural network for temporal processing,” Neural Networks, vol. 5, no. 4, pp. 565-576, 1992.
    • (1992) Neural Networks , vol.5 , Issue.4 , pp. 565-576
    • de Vries, B.1    Principe, J.2
  • 38
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 40
    • 0002663413 scopus 로고
    • Turing computability with neural networks
    • H. T. Siegelmann and E. D. Sontag, “Turing computability with neural networks,” Appl. Math. Lett., vol. 4, no. 6, pp. 77-80, 1991.
    • (1991) Appl. Math. Lett. , vol.4 , Issue.6 , pp. 77-80
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 44
    • 0000032536 scopus 로고
    • Induction of finite-state automata using second-order recurrent networks
    • R. L. Watrous and G. M. Kuhn, “Induction of finite-state automata using second-order recurrent networks,” in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 309-316.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 309-316
    • Watrous, R.L.1    Kuhn, G.M.2
  • 46
    • 0003927606 scopus 로고
    • A connectionist symbol manipulator that discovers the structure of context-free languages
    • M. C. Mozer and S. Das, “A connectionist symbol manipulator that discovers the structure of context-free languages,” in Advances in Neural Information Processing Systems 5S. J. Hanson, Jack D. Cowan, and C. Lee Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993,pp. 863-870.
    • (1993) Advances in Neural Information Processing Systems 5S. J. Hanson , pp. 863-870
    • Mozer, M.C.1    Das, S.2
  • 48
    • 0002046921 scopus 로고
    • Fool's gold: Extracting finite state machines from recurrent network dynamics
    • J. F. Kolen, “Fool's gold: Extracting finite state machines from recurrent network dynamics,” in Advances in Neural Information Processing Systems 6J. D. Cowan, G. Tesauro and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994, In Press.
    • (1994) Advances in Neural Information Processing Systems 6J. D. Cowan
    • Kolen, J.F.1
  • 49
    • 0003130308 scopus 로고
    • A unified gradient-descent/clustering architecture for finite state machine induction
    • S. Das and M. C. Mozer, “A unified gradient-descent/clustering architecture for finite state machine induction,” in Advances in Neural Information Processing Systems 6J. D. Cowan, G. Tesauro and J. Eds. San Mateo, CA: Morgan Kaufmann, 1994, In Press.
    • (1994) Advances in Neural Information Processing Systems 6J. D. Cowan
    • Das, S.1    Mozer, M.C.2
  • 50
    • 0023453626 scopus 로고
    • Learning regular sets from queries and counter examples
    • D. Angluin, “Learning regular sets from queries and counter examples,” Inform. Computa., vol. 75, 87-106, 1987.
    • (1987) Inform. Computa. , vol.75
    • Angluin, D.1
  • 51
    • 0026995322 scopus 로고
    • Random DFA's can be approximately learned from sparse uniform examples
    • July
    • K. J. Lang, “Random DFA's can be approximately learned from sparse uniform examples,” in Proc. 5th Annu. ACM Workshop Computational Learning Theory, Pittsburgh, PA, July 1992, pp. 45-52.
    • (1992) Proc. 5th Annu. ACM Workshop Computational Learning Theory , pp. 45-52
    • Lang, K.J.1
  • 52
    • 84946244077 scopus 로고
    • Untersuchungen zu dynamischen neuronalen netzen
    • J. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” 1991, Diplomarbeit, Institut für Informatik, Technische Universitat München.
    • (1991) 1991
    • Hochreiter, J.1
  • 53
  • 54
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. H. Schmidhuber, “Learning complex, extended sequences using the principle of history compression,” Neural Computa., vol. 4, no. 2, pp. 234-242, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.H.1
  • 55
    • 0348068168 scopus 로고
    • Learning unambiguous reduced sequence descriptions
    • “Learning unambiguous reduced sequence descriptions,” Advances in Neural Information Processing Systems 4in J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 291-298.
    • (1992) Advances in Neural Information Processing Systems 4in J. E. Moody , pp. 291-298
  • 57
    • 0011347548 scopus 로고
    • Learning symmetry groups with hidden units: Beyond the perceptron
    • T. J. Sejnowski, P. K. Kienker, and G. Hinton, “Learning symmetry groups with hidden units: Beyond the perceptron,” Physica D, vol. 22, pp. 260-275, 1986.
    • (1986) Physica D , vol.22 , pp. 260-275
    • Sejnowski, T.J.1    Kienker, P.K.2    Hinton, G.3
  • 58
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann Machines
    • D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann Machines,” Cognitive Sci., vol. 9, pp. 147-169, 1985.
    • (1985) Cognitive Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 60
    • 0003529238 scopus 로고
    • Beyond regression: New tools for prediction and analysis in the behavioral sciences
    • P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,” Ph.D. dissertation, Harvard Univ., 1974.
    • (1974) Ph.D. dissertation
    • Werbos, P.J.1
  • 63
    • 0002334138 scopus 로고
    • What's hidden in the hidden layers
    • Aug.
    • D. S. Touretzky and D. A. Pomerleau, “What's hidden in the hidden layers?,” BYTE, pp. 227-233, Aug. 1989.
    • (1989) BYTE , pp. 227-233
    • Touretzky, D.S.1    Pomerleau, D.A.2
  • 64
    • 0002278965 scopus 로고
    • Adaptive switching circuits
    • B. Widrow and M. Hoff, “Adaptive switching circuits,” in Proc. Western Electron. Show Conv., 1960, vol. 4, pp. 96-104, Institute of Radio Engineers (now IEEE).
    • (1960) Proc. Western Electron. Show Conv. , vol.4 , pp. 96-104
    • Widrow, B.1    Hoff, M.2
  • 65
    • 0009772169 scopus 로고
    • Second-order properties of error surfaces: Learning time and generalization
    • Y. L. Cun, I. Kanter, and S. A. Solla, “Second-order properties of error surfaces: Learning time and generalization,” in R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds., Advances in Neural Information Processing Systems 3. San Mateo, CA: Morgan Kaufmann, 1991, pp. 918-924.
    • (1991) R. P. Lippmann , pp. 918-924
    • Cun, Y.L.1    Kanter, I.2    Solla, S.A.3
  • 66
    • 0025547297 scopus 로고
    • A learning rule for CAM storage of continuous periodic sequences
    • June
    • B. Baird, “A learning rule for CAM storage of continuous periodic sequences,” in Proc. IJCNN '90 II (Int. Joint Conf. Neural Networks), San Diego, CA, June 1990, pp. 493-498.
    • (1990) Proc. IJCNN '90 II (Int. Joint Conf. Neural Networks) , pp. 493-498
    • Baird, B.1
  • 67
    • 84946245525 scopus 로고
    • CAM storage of analog patterns and continuous sequences with 3 n2 weights
    • B. Baird and F. Eeckman, “CAM storage of analog patterns and continuous sequences with 3 n2 weights,” in Advances in Neural Information Processing Systems 3R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, 91-97.
    • (1991) Advances in Neural Information Processing Systems 3R. P. Lippmann
    • Baird, B.1    Eeckman, F.2
  • 68
    • 84973949757 scopus 로고
    • How brains make chaos to make sense of the world
    • Nov.
    • C. A. Skarda and W. J. Freeman, “How brains make chaos to make sense of the world,” Brain Behavioral Sci., vol. 10, Nov. 1987.
    • (1987) Brain Behavioral Sci. , vol.10
    • Skarda, C.A.1    Freeman, W.J.2
  • 69
    • 0023186918 scopus 로고
    • Simulation of chaotic EEG patterns with a dynamic model of the olfactory system
    • W. J. Freeman, “Simulation of chaotic EEG patterns with a dynamic model of the olfactory system,” Biol. Cybern., vol. 56, p. 139, 1987.
    • (1987) Biol. Cybern. , vol.56 , pp. 139
    • Freeman, W.J.1
  • 70
    • 0001192821 scopus 로고
    • Equations of motion from a data series
    • J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series,” Complex Syst., vol. 1, pp. 417-452, 1987.
    • (1987) Complex Syst. , vol.1 , pp. 417-452
    • Crutchfield, J.P.1    McNamara, B.S.2
  • 71
    • 84946244831 scopus 로고
    • nonlinear signal processing using neural networks: Prediction and system modeling
    • A. Lapedes and R. Farber, “nonlinear signal processing using neural networks: Prediction and system modeling,” Theoretical Division, Los Alamos Nat. Los Alamos, Tech. 1987.
    • (1987) Theoretical Division
    • Lapedes, A.1    Farber, R.2
  • 72
    • 0000442791 scopus 로고
    • Generalization of backpropagation to recurrent neural networks
    • F. Pineda, “Generalization of backpropagation to recurrent neural networks,” Physical Rev. Lett., vol. 19, no. 59, pp. 2229-2232, 1987.
    • (1987) Physical Rev. Lett. , vol.19 , Issue.59 , pp. 2229-2232
    • Pineda, F.1
  • 73
    • 0023563286 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
    • June
    • L. B. Almeida, “A learning rule for asynchronous perceptrons with feedback in a combinatorial environment,” in Proc. IEEE 1st Int. Conf Neural Networks, San Diego, CA, June 21-24, 1987, pp. 609-618.
    • (1987) Proc. IEEE 1st Int. Conf Neural Networks , pp. 609-618
    • Almeida, L.B.1
  • 74
    • 0001590282 scopus 로고
    • Deterministic Boltzmann learning performs steepest descent in weight-space
    • G. E. Hinton, “Deterministic Boltzmann learning performs steepest descent in weight-space,” Neural Computa., vol. 1, no. 1, pp. 143-150, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.1 , pp. 143-150
    • Hinton, G.E.1
  • 75
    • 0043170587 scopus 로고
    • Contrastive learning and neural oscillations
    • P. Baldi and F. Pineda, “Contrastive learning and neural oscillations,” Neural Computa., vol. 3, no. 4, pp. 526-545, 1991.
    • (1991) Neural Computa. , vol.3 , Issue.4 , pp. 526-545
    • Baldi, P.1    Pineda, F.2
  • 77
    • 0024903887 scopus 로고
    • BPS: A learning algorithm for capturing the dynamic nature of speech
    • June
    • M. Gori, Y. Bengio, and R. de Mori, “BPS: A learning algorithm for capturing the dynamic nature of speech,” in Proc. IJCNN '89 Int. Joint Conf. Neural Networks, Washington DC, June 18-22 1989, pp. 417-423.
    • (1989) Proc. IJCNN '89 Int. Joint Conf. Neural Networks , pp. 417-423
    • Gori, M.1    Bengio, Y.2    de Mori, R.3
  • 78
    • 84946243720 scopus 로고
    • A first look at phonetic discrimination using connectionist models with recurrent links
    • Apr.
    • G. Kuhn, “A first look at phonetic discrimination using connectionist models with recurrent links,” Institute Defense Anal., Princeton, NJ, SCIMP Working Paper 82018, Apr. 1987.
    • (1987) Institute Defense Anal.
    • Kuhn, G.1
  • 79
    • 0008554931 scopus 로고
    • A focused backpropagation algorithm for temporal pattern recognition
    • Aug.
    • M. C. Mozer, “A focused backpropagation algorithm for temporal pattern recognition,” Complex Syst., vol. 3, no. 4, pp. 349-381, Aug. 1989.
    • (1989) Complex Syst. , vol.3 , Issue.4 , pp. 349-381
    • Mozer, M.C.1
  • 81
    • 33747465483 scopus 로고
    • Two new learning procedures for recurrent networks
    • B. A. Pearlmutter, “Two new learning procedures for recurrent networks.” Neural Network Rev., vol. 3, no. 3, 99-101, 1990.
    • (1990) Neural Network Rev. , vol.3 , Issue.3
    • Pearlmutter, B.A.1
  • 83
    • 0020970741 scopus 로고
    • Stability of global pattern formation and parallel memory storage by competitive neural networks
    • M. A. Cohen and S. Grossberg, “Stability of global pattern formation and parallel memory storage by competitive neural networks,” IEEE Trans. Syst., Man Cybern., vol. 13, pp. 815-826, 1983.
    • (1983) IEEE Trans. Syst. , vol.13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 86
    • 0001202693 scopus 로고
    • A study of network dynamics
    • June
    • S. Renals and R. Rohwer, “A study of network dynamics,” J. Statistical Physics, vol. 58. pp. 825-848, June 1990.
    • (1990) J. Statistical Physics , vol.58 , pp. 825-848
    • Renals, S.1    Rohwer, R.2
  • 87
    • 84946244928 scopus 로고
    • Learning of stable states in stochastic asymmetric networks
    • Nov.
    • R. B. Allen and J. Alspector, “Learning of stable states in stochastic asymmetric networks,” Bell Commun. Res., Morristown, NJ, Tech. Rep. TM-ARH-015240, Nov. 1989.
    • (1989) Bell Commun. Res.
    • Allen, R.B.1    Alspector, J.2
  • 88
    • 84946244457 scopus 로고
    • Deterministic Boltzmann learning in networks with asymmetric connectivity
    • C. C. Galland and G. E. Hinton, “Deterministic Boltzmann learning in networks with asymmetric connectivity,” Univ. Toronto Dep. Comput. Sci., Tech. 1989.
    • (1989) Univ. Toronto Dep. Comput. Sci.
    • Galland, C.C.1    Hinton, G.E.2
  • 89
    • 0345741104 scopus 로고
    • Gain variation in recurrent error propagation networks
    • June
    • S. J. Nowlan, “Gain variation in recurrent error propagation networks,” Complex Syst., vol. 2, no. 3, 305-320, June 1988.
    • (1988) Complex Syst. , vol.2 , Issue.3
    • Nowlan, S.J.1
  • 91
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural nets
    • C. Peterson and J. R. Anderson, “A mean field theory learning algorithm for neural nets,” Complex Syst., vol. 1, 1987.
    • (1987) Complex Syst. , vol.1
    • Peterson, C.1    Anderson, J.R.2
  • 95
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos, “Backpropagation through time: What it does and how to do it,” in Proc. IEEE, vol. 78, pp. 1550-1560, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 96
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • B. Pearlmutter, “Learning state space trajectories in recurrent neural networks,” Neural Computa., vol. 1, no. 2, pp. 263-269, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.2 , pp. 263-269
    • Pearlmutter, B.1
  • 97
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos, “Generalization of backpropagation with application to a recurrent gas market model,” Neural Networks, vol. 1, pp. 339-356, 1988.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 98
    • 85024508370 scopus 로고
    • A steepest ascent method for solving optimum programming problems
    • A. E. Bryson, Jr., “A steepest ascent method for solving optimum programming problems,” J. Appl. Mechanics, vol. 29, no. 2, p. 247, 1962.
    • (1962) J. Appl. Mechanics , vol.29 , Issue.2 , pp. 247
    • Bryson, A.E.1
  • 100
    • 0001773535 scopus 로고
    • Applications of advances in nonlinear sensitivity analysis
    • Aug.
    • P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in Proc. 10th IFIP Conf Syst. Modeling Optimization, New York, Aug. 31-Sep. 4, 1981.
    • (1981) Proc. 10th IFIP Conf Syst. Modeling Optimization
    • Werbos, P.J.1
  • 101
    • 0005803728 scopus 로고
    • Static and dynamic error propagation networks with application to speech coding
    • June
    • A. J. Robinson and F. Fallside, “Static and dynamic error propagation networks with application to speech coding,” in Proc. Int. Joint Conf. Neural Networks, Washington DC, June 18-22 1989, pp. 632-641.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 632-641
    • Robinson, A.J.1    Fallside, F.2
  • 102
    • 0024939338 scopus 로고
    • A learning algorithm for analog, fully recurrent neural networks
    • June
    • M. Gherrity, “A learning algorithm for analog, fully recurrent neural networks,” in Proc. IJCNN '89 Int. Joint Conf. Neural Networks, Washington DC, June 18-22 1989, pp. 643-644.
    • (1989) Proc. IJCNN '89 Int. Joint Conf. Neural Networks , pp. 643-644
    • Gherrity, M.1
  • 103
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Computa., vol. 1, no. 2, pp. 270-280, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 104
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of dynamical systems containing neural networks,” IEEE Trans. Neural Networks, vol. no. Mar. 1991.
    • (1991) IEEE Trans. Neural Networks
    • Narendra, K.S.1    Parthasarathy, K.2
  • 105
    • 34250516620 scopus 로고
    • New second-order and first-order algorithm for determining optimal control: A differential dynamic programming approach
    • D. H. Jacobson, “New second-order and first-order algorithm for determining optimal control: A differential dynamic programming approach,” J. Optimization Theory Applicat., vol. 2, 1968.
    • (1968) J. Optimization Theory Applicat. , vol.2
    • Jacobson, D.H.1
  • 108
    • 0037700575 scopus 로고
    • Subgrouping reduces complexity and speeds up learning in recurrent networks
    • D. Zipser, “Subgrouping reduces complexity and speeds up learning in recurrent networks,” in Advances in Neural Information Processing Systems 2D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 638-641.
    • (1990) Advances in Neural Information Processing Systems 2D. S. Touretzky , pp. 638-641
    • Zipser, D.1
  • 109
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng, “An efficient gradient-based algorithm for on-line training of recurrent network trajectories,” Neural Computa., vol. 2, no. 4, 1990.
    • (1990) Neural Computa. , vol.2 , Issue.4
    • Williams, R.J.1    Peng, J.2
  • 110
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and their computational complexity,” in Backpropagation: Theory, Architectures and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994, in Press.
    • (1994) Backpropagation: Theory
    • Williams, R.J.1    Zipser, D.2
  • 111
    • 0000053463 scopus 로고
    • A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks
    • Jürgen H. Schmidhuber, “A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks,” Neural Computa., vol. 4, no. 2, pp. 243-248, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.H.1
  • 112
    • 0000651310 scopus 로고
    • Green's function method for fast on-line learning algorithm of recurrent neural networks
    • G.-Z. Sun, H.-H. Chen, and Y.-C. Lee, “Green's function method for fast on-line learning algorithm of recurrent neural networks,” in Advances in Neural Information Processing Systems 4J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 333-340.
    • (1992) Advances in Neural Information Processing Systems 4J. E. Moody , pp. 333-340
    • Sun, G.-Z.1    Chen, H.-H.2    Lee, Y.-C.3
  • 113
    • 0025547301 scopus 로고
    • Learning internal representations of pattern sequences in a neural network with adaptive time-delays
    • June
    • U. Bodenhausen, “Learning internal representations of pattern sequences in a neural network with adaptive time-delays,” in Proc. IJCNN '90 II (Int. Joint Conf. Neural Networks), San Diego, CA, June 1990.
    • (1990) Proc. IJCNN '90 II (Int. Joint Conf. Neural Networks)
    • Bodenhausen, U.1
  • 114
    • 0023317858 scopus 로고
    • Neural computation by time compression
    • D. W. Tank and J. J. Hopfield, “Neural computation by time compression,” Proc. National Academy Sci., vol. 84, pp. 1896-1900, 1987.
    • (1987) Proc. National Academy Sci. , vol.84 , pp. 1896-1900
    • Tank, D.W.1    Hopfield, J.J.2
  • 115
    • 0141840579 scopus 로고
    • Speech recognition using connectionist networks
    • Oct.
    • R. L. Watrous, “Speech recognition using connectionist networks,” Ph.D. dissertation, Univ. Pennsylvania, Oct. 1988.
    • (1988) Ph.D. dissertation
    • Watrous, R.L.1
  • 116
    • 33747641474 scopus 로고
    • Shaping the state space landscape in recurrent networks
    • P. Y. Simard, J. P. Rayzs, and B. Victorri, “Shaping the state space landscape in recurrent networks,” in Advances in Neural Information Processing Systems 3, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 105-112.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 105-112
    • Simard, P.Y.1    Rayzs, J.P.2    Victorri, B.3
  • 117
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, “Finding structure in time,” Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 118
    • 0004262806 scopus 로고
    • Finding structure in time
    • “Finding structure in time,” Center Res. Language, Univ. Calif. San Tech. 1988.
    • (1988) Center Res. Language
  • 120
    • 0011943051 scopus 로고
    • Learning by choice of internal representations
    • T. Grossman, R. Meir, and E. Domany, “Learning by choice of internal representations,” Complex Syst., vol. 2, pp. 555-575, 1989.
    • (1989) Complex Syst. , vol.2 , pp. 555-575
    • Grossman, T.1    Meir, R.2    Domany, E.3
  • 122
    • 84946244246 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Nov.
    • R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Univ. Calif San Diego, La CA Tech. ICS Nov. 1988.
    • (1988) Univ. Calif San Diego
    • Williams, R.J.1    Zipser, D.2
  • 123
    • 0001887517 scopus 로고
    • Attractor dynamics and parallelism in a connectionist sequential machine
    • M. I. Jordan, “Attractor dynamics and parallelism in a connectionist sequential machine,” in Proc. 9th Annu. Conf. Cognitive Sci. Soc., 1986, pp. 531-546.
    • (1986) Proc. 9th Annu. Conf. Cognitive Sci. Soc. , pp. 531-546
    • Jordan, M.I.1
  • 124
    • 0000838510 scopus 로고
    • Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm
    • July
    • M. B. Matthews, “Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm,” in Proc. Int. Neural Networks Conf., Paris, July 1990, vol. 1, pp. 115-119.
    • (1990) Proc. Int. Neural Networks Conf. , vol.1 , pp. 115-119
    • Matthews, M.B.1
  • 125
    • 85132302281 scopus 로고
    • Training recurrent networks using the extended Kalman filter
    • R. J. Williams, “Training recurrent networks using the extended Kalman filter,” in Proc. IJCNN '92, (Int. Joint Conf. Neural Networks), Baltimore MD, 1992, 241-250.
    • (1992) Proc. IJCNN '92
    • Williams, R.J.1
  • 126
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Mar.
    • R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng., vol. 82, no. 1, pp. 35-45, Mar. 1960.
    • (1960) Trans. ASME J. Basic Eng. , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1
  • 127
    • 0014764781 scopus 로고
    • On the identification of variances and adaptive Kalman filtering
    • Apr.
    • R. K. Mahra, “On the identification of variances and adaptive Kalman filtering,” IEEE Trans. Automat. Contr., vol. AC-15, no. 2, pp. 175-184, Apr. 1970.
    • (1970) IEEE Trans. Automat. Contr. , vol.AC-15 , Issue.2 , pp. 175-184
    • Mahra, R.K.1
  • 129
    • 0006537321 scopus 로고
    • Adaptive soft weight tying using Gaussian mixtures
    • S. J. Nowlan and G. E. Hinton, “Adaptive soft weight tying using Gaussian mixtures,” in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, 993-1000.
    • (1992) Advances in Neural Information Processing Systems 4
    • Nowlan, S.J.1    Hinton, G.E.2
  • 131
    • 0342835008 scopus 로고
    • Learning algorithms for oscillatory networks with gap junctions and membrane currents
    • Feb.
    • P. F. Rowat and A. I. Selverston, “Learning algorithms for oscillatory networks with gap junctions and membrane currents,” Network: Computation Neural Syst., vol. 2, no. 1, 17-42, Feb. 1991.
    • (1991) Network: Computation Neural Syst. , vol.2 , Issue.1
    • Rowat, P.F.1    Selverston, A.I.2
  • 133
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Networks, vol. 1, no. 4, pp. 295-307, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1
  • 134
    • 0038397468 scopus 로고
    • Faster learning for dynamic recurrent backpropagation
    • Y. Fang and T. J. Sejnowski, “Faster learning for dynamic recurrent backpropagation,” Neural Computa., vol. 2, no. 3, 270-273, 1990.
    • (1990) Neural Computa. , vol.2 , Issue.3
    • Fang, Y.1    Sejnowski, T.J.2
  • 136
    • 0026971570 scopus 로고
    • Adapting bias by gradient descent: An incremental version of delta-bar-delta
    • “Adapting bias by gradient descent: An incremental version of delta-bar-delta,” in Proc. Nat. Conf Artificial Intell. AAAI-92, 1992.
    • (1992) Proc. Nat. Conf Artificial Intell. AAAI-92
  • 137
    • 84946244108 scopus 로고
    • Adaptation of cuespecific learning rates in network models of human category learning
    • M. A. Gluck, P. T. Glauthier, and R. S. Sutton, “Adaptation of cuespecific learning rates in network models of human category learning,” in Proc. 14th Annu. Sci. 1992.
    • (1992) Proc. 14th Annu. Sci. 1992.
    • Gluck, M.A.1    Glauthier, P.T.2    Sutton, R.S.3
  • 139
    • 0016987049 scopus 로고
    • Stationary and nonstationary learning characteristics of the LMS adaptive filter
    • B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, Jr., “Stationary and nonstationary learning characteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64, pp. 1151-1162, 1976.
    • (1976) Proc. IEEE , vol.64 , pp. 1151-1162
    • Widrow, B.1    McCool, J.M.2    Larimore, M.G.3    Johnson, C.R.4
  • 142
    • 0023602770 scopus 로고
    • Optimal algorithms for adaptive networks: Second-order backpropagation, second-order direct propagation and second-order Hebbian learning
    • June
    • D. B. Parker, “Optimal algorithms for adaptive networks: Second-order backpropagation, second-order direct propagation and second-order Hebbian learning,” in Proc. IEEE 1st Int. Conf. Neural Networks, San Diego, CA, June 21-24, 1987, pp. 593-600.
    • (1987) Proc. IEEE 1st Int. Conf. Neural Networks , pp. 593-600
    • Parker, D.B.1
  • 143
    • 0023541050 scopus 로고
    • Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization
    • June
    • R. Watrous, “Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization,” in Proc. IEEE 1st Int. Conf Neural Networks, San Diego, CA, June 21-24, 1987, pp. 619-627.
    • (1987) Proc. IEEE 1st Int. Conf Neural Networks , pp. 619-627
    • Watrous, R.1
  • 144
    • 0024125970 scopus 로고
    • The LMS algorithm with momentum updating
    • June
    • J. J. Shynk and S. Roy, “The LMS algorithm with momentum updating,” in Proc. IEEE Int. Symp. Circuits Syst., June 6-9 1988, pp. 2651-2654.
    • (1988) Proc. IEEE Int. Symp. Circuits Syst. , pp. 2651-2654
    • Shynk, J.J.1    Roy, S.2
  • 145
    • 84946244402 scopus 로고
    • Asymptotic convergence of back- Neural
    • G. Tesauro, Y. He, and S. Ahmad, “Asymptotic convergence of back- Neural vol. 1, no. 3, 382-391, 1989.
    • (1989) , vol.1 , Issue.3
    • Tesauro, G.1    He, Y.2    Ahmad, S.3
  • 146
    • 0024749726 scopus 로고
    • Properties of the momentum LMS algorithm
    • Oct.
    • M. A. Tuğay and Y. Tanik, “Properties of the momentum LMS algorithm,” Signal Process., vol. 18, no. 2, 117-127, Oct. 1989.
    • (1989) Signal Process. , vol.18 , Issue.2
    • Tuğay, M.A.1    Tanik, Y.2
  • 147
    • 0342533951 scopus 로고
    • Gradient descent: Second-order momentum and saturating error
    • B. A. Pearlmutter, “Gradient descent: Second-order momentum and saturating error,” in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 887-894.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 887-894
    • Pearlmutter, B.A.1
  • 148
    • 0021835689 scopus 로고
    • ‘Neural' computation of decisions in optimization problems
    • J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions in optimization problems,” Biol. Cybern., vol. 52, pp. 141-152, 1985.
    • (1985) Biol. Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 149
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Geiatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Sci., vol. 220, pp. 671-680, 1983.
    • (1983) Sci. , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Geiatt, C.D.2    Vecchi, M.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.