-
1
-
-
0000293183
-
Theory of communications
-
D. Gabor, “Theory of communications,” J. Inst. Elec. Eng., vol. 93, pp. 429-459, 1946.
-
(1946)
J. Inst. Elec. Eng.
, vol.93
, pp. 429-459
-
-
Gabor, D.1
-
2
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
Sept.
-
I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 961-1005, Sept. 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, Issue.5
, pp. 961-1005
-
-
Daubechies, I.1
-
3
-
-
0003833285
-
Ten Lectures on Wavelets
-
Ten Lectures on Wavelets, SIAM, 1992.
-
(1992)
SIAM
-
-
-
4
-
-
0019008929
-
Gabor’;s expansion of a signal into Gaussian elementary functions
-
M. J. Bastiaans, “Gabor’;s expansion of a signal into Gaussian elementary functions,” in Proc. IEEE, vol. 68, pp. 538-539, 1980.
-
(1980)
Proc. IEEE
, vol.68
, pp. 538-539
-
-
Bastiaans, M.J.1
-
5
-
-
0019585486
-
A sampling theorem for the complex spectrogram and Gabor’;s expansion of a signal in Gaussian elementary signals
-
“A sampling theorem for the complex spectrogram and Gabor’;s expansion of a signal in Gaussian elementary signals,” Opt. Eng., vol. 20, pp. 594-598, 1981.
-
(1981)
Opt. Eng.
, vol.20
, pp. 594-598
-
-
-
6
-
-
0000393325
-
Gabor representation of generalized functions
-
A. J. E. M. Janssen, “Gabor representation of generalized functions,” in J. Math Appl., vol. 80, pp. 377-394, 1981.
-
(1981)
J. Math Appl.
, vol.80
, pp. 377-394
-
-
Janssen, A.J.E.M.1
-
7
-
-
36549090598
-
Painless nonorthogonal expansions
-
I. Daubechies, A. Grossman, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys., vol. 27, pp. 1271-1283, 1986.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 1271-1283
-
-
Daubechies, I.1
Grossman, A.2
Meyer, Y.3
-
8
-
-
0027644629
-
Oversampling in the Gabor scheme
-
Aug.
-
M. Zibulski and Y. Y. Zeevi, “Oversampling in the Gabor scheme,” IEEE Trans. Signal Processing, vol. 41, no. 8, pp. 2679-2687, Aug. 1993.
-
(1993)
IEEE Trans. Signal Processing
, vol.41
, Issue.8
, pp. 2679-2687
-
-
Zibulski, M.1
Zeevi, Y.Y.2
-
9
-
-
0027629367
-
Discrete Gabor transform
-
July
-
S. Qian and D. Chen, “Discrete Gabor transform,” IEEE Trans. Signal Processing, vol. 41, no. 7, pp. 2429-2438, July 1993.
-
(1993)
IEEE Trans. Signal Processing
, vol.41
, Issue.7
, pp. 2429-2438
-
-
Qian, S.1
Chen, D.2
-
10
-
-
0029323625
-
Robust transient signal detection using the oversampled Gabor representation
-
N. Lee and S. C. Schwartz, “Robust transient signal detection using the oversampled Gabor representation,” IEEE Trans. Signal Processing, vol. 43, no. 6, pp. 1498-1502, 1995.
-
(1995)
IEEE Trans. Signal Processing
, vol.43
, Issue.6
, pp. 1498-1502
-
-
Lee, N.1
Schwartz, S.C.2
-
11
-
-
0025519408
-
Discrete Gabor expansions
-
Nov.
-
J. Wexler and S. Raz, “Discrete Gabor expansions,” Signal Processing, vol. 21, no. 3, pp. 207-221, Nov. 1990.
-
(1990)
Signal Processing
, vol.21
, Issue.3
, pp. 207-221
-
-
Wexler, J.1
Raz, S.2
-
13
-
-
0021890796
-
On the sliding-window representation in digital signal processing
-
Aug.
-
M. J. Bastiaans, “On the sliding-window representation in digital signal processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, no. 4, pp. 868-873, Aug. 1985.
-
(1985)
IEEE Trans. Acoust.
, vol.33
, Issue.4
, pp. 868-873
-
-
Bastiaans, M.J.1
-
14
-
-
0024612475
-
Detection of transient signals by the Gabor representation
-
Feb.
-
B. Friedlander and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 2, pp. 169-180, Feb. 1989.
-
(1989)
IEEE Trans. Acoust.
, vol.37
, Issue.2
, pp. 169-180
-
-
Friedlander, B.1
Porat, B.2
-
15
-
-
0026939844
-
Performance analysis of a class of transient detection algorithms—A unified approach
-
Oct.
-
B. Porat and B. Friedlander, “Performance analysis of a class of transient detection algorithms—A unified approach,” IEEE Trans. Signal Processing, vol. 40, no. 10, pp. 2536-2546, Oct. 1992.
-
(1992)
IEEE Trans. Signal Processing
, vol.40
, Issue.10
, pp. 2536-2546
-
-
Porat, B.1
Friedlander, B.2
-
17
-
-
0023851205
-
The Zak transform: A signal transform for sampled time-continuous signals
-
A. J. E. M. Janssen, “The Zak transform: A signal transform for sampled time-continuous signals,” Philips J. Res., vol 43, no. 1, pp. 23-69, 1988.
-
(1988)
Philips J. Res.
, vol.43
, Issue.1
, pp. 23-69
-
-
Janssen, A.J.E.M.1
-
18
-
-
84968468760
-
A class of nonharmonic Fourier series
-
R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series,” Trans. Amer. Math. Soc., vol. 72, pp. 341-366, 1952.
-
(1952)
Trans. Amer. Math. Soc.
, vol.72
, pp. 341-366
-
-
Duffin, R.J.1
Schaeffer, A.C.2
-
19
-
-
0024903928
-
Continuous and discrete wavelet transforms
-
C. Heil and D. Walnut, “Continuous and discrete wavelet transforms,” SIAM Rev., vol. 31, pp. 628-666, 1989.
-
(1989)
SIAM Rev.
, vol.31
, pp. 628-666
-
-
Heil, C.1
Walnut, D.2
|