메뉴 건너뛰기




Volumn 33, Issue 4, 1995, Pages 981-996

A Detailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban Land Use Classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BACKPROPAGATION; FUNCTIONS; ITERATIVE METHODS; PATTERN RECOGNITION; VECTORS;

EID: 0029341018     PISSN: 01962892     EISSN: 15580644     Source Type: Journal    
DOI: 10.1109/36.406684     Document Type: Article
Times cited : (327)

References (33)
  • 2
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • July
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network approaches versus statistical methods in classification of multisource remote sensing data,” IEEE Trans. Geosci. Remote Sensing, vol. 28, pp. 540–551, July 1990.
    • (1990) IEEE Trans. Geosci. Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 3
    • 0025530719 scopus 로고
    • Classification of very high dimensional data using neural networks
    • College Park, MD May
    • J. A. Benediktsson, P. H. Swain, O. K. Ersoy, and D. Hong, “Classification of very high dimensional data using neural networks,” in Proc. IGARSS, College Park, MD, May 1990, pp. 1269–1272.
    • (1990) Proc. IGARSS , pp. 1269-1272
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3    Hong, D.4
  • 4
    • 0026868031 scopus 로고
    • Multispectral classification of landsat-images using neural networks
    • May
    • H. Bischof, W. Schneider, and A. J. Pinz, “Multispectral classification of landsat-images using neural networks,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 482–490, May 1992.
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , pp. 482-490
    • Bischof, H.1    Schneider, W.2    Pinz, A.J.3
  • 5
    • 0005380346 scopus 로고
    • Neural networks primer: Part III
    • June
    • M. Caudill, “Neural networks primer: Part III,” AI Expert, June, 1988, pp. 53–59.
    • (1988) AI Expert , pp. 53-59
    • Caudill, M.1
  • 6
    • 0025903996 scopus 로고
    • Landsat TM image classification with an artificial neural network
    • Baltimore, MD
    • D. L. Civco, “Landsat TM image classification with an artificial neural network,” in Proc. ASPRS-ACSM Ann. Meeting, Baltimore, MD, vol. 3, pp. 67–77, 1991.
    • (1991) Proc. ASPRS-ACSM Ann. Meeting , vol.3 , pp. 67-77
    • Civco, D.L.1
  • 7
    • 0027525734 scopus 로고
    • Artificial neural networks for land-cover classification and mapping
    • D. L. Civco, “Artificial neural networks for land-cover classification and mapping,” Int. J. Geographical Inform. Syst., vol. 7, no. 2, pp. 173–186, 1993.
    • (1993) Int. J. Geographical Inform. Syst. , vol.7 , Issue.2 , pp. 173-186
    • Civco, D.L.1
  • 8
    • 84964515433 scopus 로고
    • Sea ice classification using fast learning neural networks
    • Houston, TX May
    • M. S. Dawson, A. K. Fung, and M. T. Manry, “Sea ice classification using fast learning neural networks,” in Proc. IGARSS, Houston, TX, May 1992, pp. 1070–1071.
    • (1992) Proc. IGARSS , pp. 1070-1071
    • Dawson, M.S.1    Fung, A.K.2    Manry, M.T.3
  • 9
    • 0027595168 scopus 로고
    • Classification of land cover using optimized neural nets on SPOT data
    • P. Dreyer, “Classification of land cover using optimized neural nets on SPOT data,” Photogrammetric Eng. Remote Sensing, vol. 59, no. 5, pp. 617–621, 1993.
    • (1993) Photogrammetric Eng. Remote Sensing , vol.59 , Issue.5 , pp. 617-621
    • Dreyer, P.1
  • 10
    • 0027007203 scopus 로고
    • Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification
    • G. M. Foody, N. A. Campbell, N. M. Trodd, and T. F. Wood, “Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification,” Photogrammetric Eng. Remote Sensing, vol. 58, no. 9, pp. 1335–1341, 1992.
    • (1992) Photogrammetric Eng. Remote Sensing , vol.58 , Issue.9 , pp. 1335-1341
    • Foody, G.M.1    Campbell, N.A.2    Trodd, N.M.3    Wood, T.F.4
  • 11
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Albuquerque, NM
    • H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in Proc. IEEE Int. Conf. Acoust., Signal, Speech Processing, Albuquerque, NM, vol. 3, 1990, pp. 1361–1364.
    • (1990) Proc. IEEE Int. Conf. Acoust., Signal, Speech Processing , vol.3 , pp. 1361-1364
    • Gish, H.1
  • 13
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Jan.
    • P. D. Heermann and N. Khazenie, “Classification of multispectral remote sensing data using a back-propagation neural network,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 81–88, Jan. 1992.
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 14
    • 85032752004 scopus 로고
    • Progress in supervised neural networks
    • D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE Signal Processing Mag., vol. 10, no. 1, pp. 8–39, 1993.
    • (1993) IEEE Signal Processing Mag. , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.R.1    Horne, B.G.2
  • 15
    • 0026398146 scopus 로고
    • Neural network classification of multi-date satellite imagery
    • Espoo, Finland June
    • I. Kanellopoulos, A. Varfis, G. G. Wilkinson, and J. Mégier, “Neural network classification of multi-date satellite imagery,” in Proc. IGARSS, Espoo, Finland, June 1991, pp. 2215–2218.
    • (1991) Proc. IGARSS , pp. 2215-2218
    • Kanellopoulos, I.1    Varfis, A.2    Wilkinson, G.G.3    Mégier, J.4
  • 16
    • 0027831131 scopus 로고
    • Integration of neural network and statistical image classification for land cover mapping
    • Tokyo, Japan Aug.
    • I. Kanellopoulos, G. G. Wilkinson, and J. Mégier, “Integration of neural network and statistical image classification for land cover mapping,” in Proc. IGARSS, Tokyo, Japan, Aug. 1993, pp. 511–513.
    • (1993) Proc. IGARSS , pp. 511-513
    • Kanellopoulos, I.1    Wilkinson, G.G.2    Mégier, J.3
  • 17
    • 0024855681 scopus 로고
    • Classification of merged AVHRR and SMMR arctic data with neural networks
    • J. Key, J. A. Maslanik, and A. J. Schweiger, “Classification of merged AVHRR and SMMR arctic data with neural networks,” Photogrammetric Eng. Remote Sensing, vol. 55, no. 9, pp. 1331–1338, 1989.
    • (1989) Photogrammetric Eng. Remote Sensing , vol.55 , Issue.9 , pp. 1331-1338
    • Key, J.1    Maslanik, J.A.2    Schweiger, A.J.3
  • 18
    • 0025530174 scopus 로고
    • Neural network versus maximum likelihood classifications of spectral and textural features in visible, thermal, and passive microwave data
    • College Park, MD May
    • J. Key, J. A. Maslanik, and A. J. Schweiger, “Neural network versus maximum likelihood classifications of spectral and textural features in visible, thermal, and passive microwave data,” in Proc. IGARSS, College Park, MD, May 1990, pp. 1277–1280.
    • (1990) Proc. IGARSS , pp. 1277-1280
    • Key, J.1    Maslanik, J.A.2    Schweiger, A.J.3
  • 19
    • 84964543186 scopus 로고
    • Classification of remotely sensed data using OCR-inspired neural network techniques
    • Houston, TX May
    • R. K. Kiang, “Classification of remotely sensed data using OCR-inspired neural network techniques,” in Proc. IGARSS, Houston, TX, May 1992, pp. 1081–1083.
    • (1992) Proc. IGARSS , pp. 1081-1083
    • Kiang, R.K.1
  • 20
    • 0027836347 scopus 로고
    • A new approach to pattern recognition of remote sensing image using artificial neural network
    • Tokyo, Japan Aug.
    • H. Li, Z. Liu, and W. Sun, “A new approach to pattern recognition of remote sensing image using artificial neural network,” in Proc. IGARSS, Tokyo, Japan, Aug. 1993, pp. 713–715.
    • (1993) Proc. IGARSS , pp. 713-715
    • Li, H.1    Liu, Z.2    Sun, W.3
  • 22
    • 0000534571 scopus 로고
    • Classification of remotely-sensed image data using artificial neural networks
    • Z. K. Liu and J. Y. Xiao, “Classification of remotely-sensed image data using artificial neural networks,” Int. J. Remote Sensing, vol. 12, no. 11, pp. 2433–2438, 1991.
    • (1991) Int. J. Remote Sensing , vol.12 , Issue.11 , pp. 2433-2438
    • Liu, Z.K.1    Xiao, J.Y.2
  • 24
    • 0025572918 scopus 로고
    • A C-extension for rule-based image classification systems
    • G. Mehldau and R. A. Schowengerdt, “A C-extension for rule-based image classification systems,” Photogrammetric Eng. Remote Sensing, vol. 56, no. 6, pp. 887–892, 1990.
    • (1990) Photogrammetric Eng. Remote Sensing , vol.56 , Issue.6 , pp. 887-892
    • Mehldau, G.1    Schowengerdt, R.A.2
  • 25
    • 0026383371 scopus 로고
    • Neural networks applied to the classification of remotely sensed data
    • Espoo, Finland June
    • N.J. Mulder and L. Spreeuwers, “Neural networks applied to the classification of remotely sensed data,” in Proc. IGARSS, Espoo, Finland, June 1991, pp. 2211–2213.
    • (1991) Proc. IGARSS , pp. 2211-2213
    • Mulder, N.J.1    Spreeuwers, L.2
  • 27
    • 84933462396 scopus 로고    scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely sensed multispectral imagery
    • to be published
    • J. D. Paola and R. A. Schowengerdt, “A review and analysis of backpropagation neural networks for classification of remotely sensed multispectral imagery,” Int. J. Remote Sensing, to be published.
    • Int. J. Remote Sensing
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 28
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. R. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Computation, vol. 3, pp. 461–483, 1991.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.R.2
  • 29
    • 0025573169 scopus 로고
    • Application of an artificial neural network to land-cover classification of thematic mapper imagery
    • N. D. Ritter and G. F. Hepner, “Application of an artificial neural network to land-cover classification of thematic mapper imagery,” Computers Geosci., vol. 16, no. 6, pp. 873–880, 1990.
    • (1990) Computers Geosci. , vol.16 , Issue.6 , pp. 873-880
    • Ritter, N.D.1    Hepner, G.F.2
  • 30
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart and J. L. McClelland, Eds. Foundations. Cambridge, MA: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. Cambridge, MA: MIT Press, 1986, pp. 318–362.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 0025749137 scopus 로고
    • A real-time expert system and neural network for the classification of remotely sensed data
    • Baltimore, MD
    • N. Short, “A real-time expert system and neural network for the classification of remotely sensed data,” in Proc. ASPRS-ACSM Ann. Meet., Baltimore, MD, vol. 3, pp. 406–418, 1991.
    • (1991) Proc. ASPRS-ACSM Ann. Meet. , vol.3 , pp. 406-418
    • Short, N.1
  • 32
    • 0018203420 scopus 로고
    • Fundamentals of pattern recognition in remote sensing
    • P. H. Swain and S. M. Davis, Eds. New York: McGraw-Hill
    • P. H. Swain, “Fundamentals of pattern recognition in remote sensing,” in P. H. Swain and S. M. Davis, Eds., Remote Sensing: The Quantitative Approach. New York: McGraw-Hill, 1978, pp. 137–187.
    • (1978) Remote Sensing: The Quantitative Approach. , pp. 137-187
    • Swain, P.H.1
  • 33
    • 0020087362 scopus 로고
    • A context-based land-use classification algorithm for high-resolution remotely sensed data
    • S. W. Wharton, “A context-based land-use classification algorithm for high-resolution remotely sensed data,” J. Appl. Photographic Eng., vol. 8, no. 1, pp. 46–50, 1982.
    • (1982) J. Appl. Photographic Eng. , vol.8 , Issue.1 , pp. 46-50
    • Wharton, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.