메뉴 건너뛰기




Volumn 33, Issue 4, 1995, Pages 971-980

An Improved Technique in Porosity Prediction: A Neural Network Approach

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; FLOW OF FLUIDS; HYDROCARBONS; PETROLEUM RESERVOIRS; POROSITY; ROCKS;

EID: 0029339808     PISSN: 01962892     EISSN: 15580644     Source Type: Journal    
DOI: 10.1109/36.406683     Document Type: Article
Times cited : (60)

References (30)
  • 1
    • 0000290859 scopus 로고
    • Application of neural network to the problem of mineral identification from well logs
    • J. L. Baldwin, A. R. M. Bateman, and C. L. Wheatley, “Application of neural network to the problem of mineral identification from well logs,” Log Analyst, vol. 3, pp. 279–293, 1990.
    • (1990) Log Analyst , vol.3 , pp. 279-293
    • Baldwin, J.L.1    Bateman, A.R.M.2    Wheatley, C.L.3
  • 3
    • 0026868031 scopus 로고
    • Multispectral classification of landsat-images using neural networks
    • H. Bischof, W. Schneider, and A. J. Pinz, “Multispectral classification of landsat-images using neural networks,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 482–490, 1992.
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , pp. 482-490
    • Bischof, H.1    Schneider, W.2    Pinz, A.J.3
  • 4
    • 0005380346 scopus 로고
    • Neural networks primer: Part III
    • M. Caudill, “Neural networks primer: Part III,” AI Expert, vol. 3, pp. 53–59, 1988.
    • (1988) AI Expert , vol.3 , pp. 53-59
    • Caudill, M.1
  • 8
    • 0344190775 scopus 로고
    • Comparative study of backpropagation neural network and statistical pattern recognition techniques in identifying sandstone lithofacies
    • H. Derek, R. Johns, and E. Pasternack, “Comparative study of backpropagation neural network and statistical pattern recognition techniques in identifying sandstone lithofacies,” Conf. Artificial Intellig. Petroleum Exploration Production, 1990, pp. 41–49.
    • (1990) Conf. Artificial Intellig. Petroleum Exploration Production , pp. 41-49
    • Derek, H.1    Johns, R.2    Pasternack, E.3
  • 12
  • 13
    • 0027333818 scopus 로고
    • Challenges in reservoir characterization
    • H. H. Haldorsen and E. Damsleth, “Challenges in reservoir characterization,” AAPG Bulletin, vol. 77, pp. 541–551, 1993.
    • (1993) AAPG Bulletin , vol.77 , pp. 541-551
    • Haldorsen, H.H.1    Damsleth, E.2
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0021477638 scopus 로고
    • Geological factors influencing reservoir performance of the Hartzog draw field, Wyoming
    • C. L. Hearn, W. J. Ebanks, R. S. Tye, and V. Ranganathan, “Geological factors influencing reservoir performance of the Hartzog draw field, Wyoming,” J. Petroleum Technol., vol. 36, pp. 1335–1344, 1984.
    • (1984) J. Petroleum Technol. , vol.36 , pp. 1335-1344
    • Hearn, C.L.1    Ebanks, W.J.2    Tye, R.S.3    Ranganathan, V.4
  • 16
    • 0024125987 scopus 로고
    • Capabilities of three-layered perceptrons
    • B. Irie and S. Miyake, “Capabilities of three-layered perceptrons,” Int. Joint Conf. Neural Networks, 1988, vol. 3, pp. 1641–1648.
    • (1988) Int. Joint Conf. Neural Networks , vol.3 , pp. 1641-1648
    • Irie, B.1    Miyake, S.2
  • 18
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R. P. Lippmann, “Pattern classification using neural networks,” IEEE Commun. Mag., vol. 27, pp. 47–64, 1989.
    • (1989) IEEE Commun. Mag. , vol.27 , pp. 47-64
    • Lippmann, R.P.1
  • 19
    • 84933414376 scopus 로고
    • Permeability estimation using a neural network: A case study from the Roberts unit, Wasson field, Yoakum Country, Texas
    • D. A. Osborne, “Permeability estimation using a neural network: A case study from the Roberts unit, Wasson field, Yoakum Country, Texas,” Conf. Artificial Intellig. Petroleum Exploration Production, 1992, pp. 89–96.
    • (1992) Conf. Artificial Intellig. Petroleum Exploration Production , pp. 89-96
    • Osborne, D.A.1
  • 20
    • 0026450705 scopus 로고
    • Determination of lithology from well logs using a neural network
    • S. J. Rogers, J. H. Fang, C. L. Karr, and D. A. Stanley, “Determination of lithology from well logs using a neural network,” AAPG Bulletin, vol. 76, pp. 731–739, 1992.
    • (1992) AAPG Bulletin , vol.76 , pp. 731-739
    • Rogers, S.J.1    Fang, J.H.2    Karr, C.L.3    Stanley, D.A.4
  • 21
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • D. E. Rumelhart, G. E. Hinton and R. H. Williams, “Learning representations by backpropagating errors,” Nature, vol. 323, pp. 533–536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.H.3
  • 24
    • 84980025378 scopus 로고
    • Bimodal distribution removal
    • J. Mira, J. Cabestany and A. Prieto, Ed. Berlin: Springer Verlag
    • P. Slade and T. D. Gedeon, “Bimodal distribution removal,” in J. Mira, J. Cabestany and A. Prieto, Ed., New Trends in Neural Computation, vol. 686. Berlin: Springer Verlag, 1993, pp. 249–254.
    • (1993) New Trends in Neural Computation , vol.686 , pp. 249-254
    • Slade, P.1    Gedeon, T.D.2
  • 25
    • 0026875107 scopus 로고
    • The use of routine and special core analysis in characterizing brent group reservoirs, U. K. North Sea
    • J. H. Stiles, Jr. and J. M. Huthilz, “The use of routine and special core analysis in characterizing brent group reservoirs, U. K. North Sea,” J. Petroleum Technol., vol. 44, pp. 704–713, 1992.
    • (1992) J. Petroleum Technol. , vol.44 , pp. 704-713
    • Stiles, J.H.1    Huthilz, J.M.2
  • 26
    • 0022845169 scopus 로고
    • Permeability prediction from well logs using multiple regression
    • L. W. Lake and H. B. Carroll Eds. New York: Academic
    • W. A. Wendt, S. Sakurai, and P. H. Nelson, “Permeability prediction from well logs using multiple regression,” in L. W. Lake and H. B. Carroll Eds., Reservoir Characterization. New York: Academic, 1986, pp. 181–222.
    • (1986) Reservoir Characterization. , pp. 181-222
    • Wendt, W.A.1    Sakurai, S.2    Nelson, P.H.3
  • 27
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline and backpropagation
    • B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron, madaline and backpropagation,” Proc. IEEE, vol. 78, pp. 1415–1442, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 29
    • 0026955101 scopus 로고
    • Can backpropagation error surface not have local minima
    • X. H. Yu, “Can backpropagation error surface not have local minima,” IEEE Trans. Neural Networks, vol. 3, pp. 1019–1021, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 1019-1021
    • Yu, X.H.1
  • 30
    • 84975674623 scopus 로고
    • Fast learning in a backpropagation algorithm with a sine-type thresholding function
    • Y. X. Zhang and D. X. Wang, “Fast learning in a backpropagation algorithm with a sine-type thresholding function,” Appl. Opt., vol. 31, pp. 2414–2416, 1992.
    • (1992) Appl. Opt. , vol.31 , pp. 2414-2416
    • Zhang, Y.X.1    Wang, D.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.