메뉴 건너뛰기




Volumn 43, Issue 5, 1995, Pages 1045-1057

Synthesis of Extremal Wavelet-Generating Filters Using Gaussian Quadrature

Author keywords

[No Author keywords available]

Indexed keywords

EXTREMAL WAVELET GENERATING FILTERS; GAUSSIAN QUADRATURE; INTEGRAL CRITERION; LEVINSON RECURSIONS; PERFECT RECONSTRUCTION FILTERS;

EID: 0029309676     PISSN: 1053587X     EISSN: 19410476     Source Type: Journal    
DOI: 10.1109/78.382392     Document Type: Article
Times cited : (11)

References (19)
  • 3
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math., vol. 41, pp. 909-996, 1988.
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 4
    • 0022733471 scopus 로고
    • The split Levinson algorithm
    • June
    • P. Delsarte and Y. V. Genin, “The split Levinson algorithm,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-34, pp. 470-478, June 1986.
    • (1986) IEEE Trans. Acoust. , vol.ASSP-34 , pp. 470-478
    • Delsarte, P.1    Genin, Y.V.2
  • 5
    • 34250813033 scopus 로고
    • The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences
    • Speech Signal Processing, Apr.
    • C. J. Demeure and C. T. Mullis, “The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences,” IEEE Trans. Acoust., Speech Signal Processing, vol. 37, pp. 545-552, Apr. 1989.
    • (1989) IEEE Trans. Acoust. , vol.37 , pp. 545-552
    • Demeure, C.J.1    Mullis, C.T.2
  • 6
    • 0025506997 scopus 로고
    • A Newton-Raphson method for moving average spectral factorization using the Euclid algorithm
    • Oct.
    • A Newton-Raphson method for moving average spectral factorization using the Euclid algorithm,” IEEE Trans. Acoust. Speech Signal Processing, vol. 38, pp. 1697-1709, Oct. 1990.
    • (1990) IEEE Trans. Acoust. Speech Signal Processing , vol.38 , pp. 1697-1709
  • 11
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • July
    • S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, pp. 674-693, July 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 15
    • 0038541253 scopus 로고
    • Bounds on a distribution function when its first n moments are given
    • H. L. Royden, “Bounds on a distribution function when its first n moments are given,” Ann. Math. Stat., vol. 24, pp. 361-376, 1953.
    • (1953) Ann. Math. Stat. , vol.24 , pp. 361-376
    • Royden, H.L.1
  • 16
    • 0017961888 scopus 로고
    • Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case
    • D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case,” Bell Syst. Tech. J., vol. 57, pp. 1371-1430, 1978.
    • (1978) Bell Syst. Tech. J. , vol.57 , pp. 1371-1430
    • Slepian, D.1
  • 17
    • 0022739248 scopus 로고
    • Exact reconstruction techniques for tree-structured subband coders
    • June
    • M. J. T. Smith and T. P. Barnwell, III, “Exact reconstruction techniques for tree-structured subband coders,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 434-441, June 1986.
    • (1986) IEEE Trans. Acoust. Speech Signal Processing , vol.ASSP-34 , pp. 434-441
    • Smith, M.J.T.1    Barnwell, T.P.2
  • 19
    • 0024701323 scopus 로고
    • Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices
    • July
    • P. P. Vaidyanathan, T. Q. Nguyen, Z. Doganata, and T. Saramaki, “Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, pp. 1042-1056, July 1989.
    • (1989) IEEE Trans. Acoust. Speech Signal Processing , vol.37 , pp. 1042-1056
    • Vaidyanathan, P.P.1    Nguyen, T.Q.2    Doganata, Z.3    Saramaki, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.