-
3
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math., vol. 41, pp. 909-996, 1988.
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
4
-
-
0022733471
-
The split Levinson algorithm
-
June
-
P. Delsarte and Y. V. Genin, “The split Levinson algorithm,” IEEE Trans. Acoust., Speech Signal Processing, vol. ASSP-34, pp. 470-478, June 1986.
-
(1986)
IEEE Trans. Acoust.
, vol.ASSP-34
, pp. 470-478
-
-
Delsarte, P.1
Genin, Y.V.2
-
5
-
-
34250813033
-
The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences
-
Speech Signal Processing, Apr.
-
C. J. Demeure and C. T. Mullis, “The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences,” IEEE Trans. Acoust., Speech Signal Processing, vol. 37, pp. 545-552, Apr. 1989.
-
(1989)
IEEE Trans. Acoust.
, vol.37
, pp. 545-552
-
-
Demeure, C.J.1
Mullis, C.T.2
-
6
-
-
0025506997
-
A Newton-Raphson method for moving average spectral factorization using the Euclid algorithm
-
Oct.
-
A Newton-Raphson method for moving average spectral factorization using the Euclid algorithm,” IEEE Trans. Acoust. Speech Signal Processing, vol. 38, pp. 1697-1709, Oct. 1990.
-
(1990)
IEEE Trans. Acoust. Speech Signal Processing
, vol.38
, pp. 1697-1709
-
-
-
8
-
-
0004045886
-
-
Reading, MA: Addison-Wesley, 1982, 2nd ed.
-
L. W. Johnson and R. D. Riess, Numerical Analysis, Reading, MA: Addison-Wesley, 1982, 2nd ed.
-
(1982)
Numerical Analysis
-
-
Johnson, L.W.1
Riess, R.D.2
-
11
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
July
-
S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, pp. 674-693, July 1989.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
15
-
-
0038541253
-
Bounds on a distribution function when its first n moments are given
-
H. L. Royden, “Bounds on a distribution function when its first n moments are given,” Ann. Math. Stat., vol. 24, pp. 361-376, 1953.
-
(1953)
Ann. Math. Stat.
, vol.24
, pp. 361-376
-
-
Royden, H.L.1
-
16
-
-
0017961888
-
Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case
-
D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case,” Bell Syst. Tech. J., vol. 57, pp. 1371-1430, 1978.
-
(1978)
Bell Syst. Tech. J.
, vol.57
, pp. 1371-1430
-
-
Slepian, D.1
-
17
-
-
0022739248
-
Exact reconstruction techniques for tree-structured subband coders
-
June
-
M. J. T. Smith and T. P. Barnwell, III, “Exact reconstruction techniques for tree-structured subband coders,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 434-441, June 1986.
-
(1986)
IEEE Trans. Acoust. Speech Signal Processing
, vol.ASSP-34
, pp. 434-441
-
-
Smith, M.J.T.1
Barnwell, T.P.2
-
19
-
-
0024701323
-
Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices
-
July
-
P. P. Vaidyanathan, T. Q. Nguyen, Z. Doganata, and T. Saramaki, “Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, pp. 1042-1056, July 1989.
-
(1989)
IEEE Trans. Acoust. Speech Signal Processing
, vol.37
, pp. 1042-1056
-
-
Vaidyanathan, P.P.1
Nguyen, T.Q.2
Doganata, Z.3
Saramaki, T.4
|