메뉴 건너뛰기




Volumn 83, Issue 5, 1995, Pages 742-770

Neural Networks for Statistical Recognition of Continuous Speech

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; ESTIMATION; NEURAL NETWORKS; PATTERN RECOGNITION; PROBABILITY; STATISTICAL METHODS; TECHNOLOGY;

EID: 0029308753     PISSN: 00189219     EISSN: 15582256     Source Type: Journal    
DOI: 10.1109/5.381844     Document Type: Article
Times cited : (104)

References (90)
  • 1
    • 0028516073 scopus 로고
    • How do humans process and recognize speech
    • special issue on robust speech recognition Oct.
    • J. Allen, “How do humans process and recognize speech?” IEEE Trans. Speech and Audio Process., special issue on robust speech recognition, vol. 2, pp. 567-578, Oct. 1994.
    • (1994) IEEE Trans. Speech and Audio Process. , vol.2 , pp. 567-578
    • Allen, J.1
  • 4
    • 0001862769 scopus 로고
    • An inequality and associated maximization techniques in statistical estimation of probabilistic functions of Markov processes
    • no. 3
    • L. Baum, “An inequality and associated maximization techniques in statistical estimation of probabilistic functions of Markov processes,” Inequalities, no. 3, pp. 1-8, 1972.
    • (1972) Inequalities , pp. 1-8
    • Baum, L.1
  • 5
    • 0026835134 scopus 로고
    • Global optimization of a neural neural network-hidden Markov model hybrid
    • Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global optimization of a neural neural network-hidden Markov model hybrid,” IEEE Trans. Neural Networks, vol. 3, pp. 252-258, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 252-258
    • Bengio, Y.1    De Mori, R.2    Flammia, G.3    Kompe, R.4
  • 9
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fogelman Soulié and J. Hérault, Eds., NATO ASI Series
    • J. S. Bridle, “Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition,” in Neurocomputing: Algorithms, Architectures and Applications, F. Fogelman Soulié and J. Hérault, Eds., NATO ASI Series, pp. 227-236, 1990.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 10
    • 0025385598 scopus 로고
    • Alpha-Nets: a recurrent neural network architecture with a hidden Markov model interpretation
    • J. S. Bridle, “Alpha-Nets: a recurrent neural network architecture with a hidden Markov model interpretation,” Speech Commun., vol. 9, pp. 83-92, 1990.
    • (1990) Speech Commun. , vol.9 , pp. 83-92
    • Bridle, J.S.1
  • 12
    • 0025623688 scopus 로고
    • Maximum mutual information estimation of HMM parameters for continuous speech recognition using the N-best algorithm
    • Albuquerque, NM
    • Y.-L. Chow, “Maximum mutual information estimation of HMM parameters for continuous speech recognition using the N-best algorithm,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Albuquerque, NM, 1990, pp. 701-704.
    • (1990) IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process. , pp. 701-704
    • Chow, Y.-L.1
  • 17
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoid function
    • G. Cybenko, “Approximation by superpositions of a sigmoid function,” Math. Control, Signals and Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Control, Signals and Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 18
    • 84936903358 scopus 로고
    • Customs—A load balancing system
    • Univ. Calif. Berkeley, CA, Nov.
    • A. de Boor, “Customs—A load balancing system,” Project Rep., Computer Science Div.,, Univ. Calif. Berkeley, CA, Nov. 1988.
    • (1988) Project Rep., Computer Science Div.
    • de Boor, A.1
  • 19
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Soc., vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Soc. , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 20
    • 0028234947 scopus 로고
    • A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features
    • L. Deng and D. Sun, “A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features,” JASA, vol. 95, pp. 2702-2719, 1994.
    • (1994) JASA , vol.95 , pp. 2702-2719
    • Deng, L.1    Sun, D.2
  • 22
    • 0025547056 scopus 로고
    • A new error criterion for posterior probability estimation with neural nets
    • San Diego, CA 185-192
    • A. El-Jaroudi and J. Makhoul, “A new error criterion for posterior probability estimation with neural nets,” in IEEE Proc. Int. Joint Conf. on Neural Networks, San Diego, CA, 1990, pp. 111:185-192.
    • (1990) IEEE Proc. Int. Joint Conf. on Neural Networks , pp. 111
    • El-Jaroudi, A.1    Makhoul, J.2
  • 24
    • 0022667694 scopus 로고
    • Speaker independent isolated word recognizer using dynamic features of speech spectrum
    • Jan.
    • S. Furui, “Speaker independent isolated word recognizer using dynamic features of speech spectrum,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, pp. 52-59, Jan. 1986.
    • (1986) IEEE Trans. Acoust., Speech, Signal Process. , vol.ASSP-34 , pp. 52-59
    • Furui, S.1
  • 26
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Albuquerque, NM
    • H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in IEEE Proc. Int. Conf. on Acoust., Speech and Signal Process., Albuquerque, NM, 1990, pp. 1361-1364.
    • (1990) IEEE Proc. Int. Conf. on Acoust., Speech and Signal Process. , pp. 1361-1364
    • Gish, H.1
  • 28
    • 85017287487 scopus 로고
    • Linear discriminant analysis for improved large vocabulary continuous speech recognition
    • San Francisco, CA
    • R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large vocabulary continuous speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., San Francisco, CA, 1992, pp. I-13-16.
    • (1992) IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process. , pp. I-13-I-16
    • Haeb-Umbach, R.1    Ney, H.2
  • 29
    • 0011948879 scopus 로고
    • Connectionist architectures for multi-speaker phoneme recognition
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • J. Hampshire and A. Waibel, “Connectionist architectures for multi-speaker phoneme recognition,” in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.
    • (1990) Advances in Neural Information Processing Systems 2
    • Hampshire, J.1    Waibel, A.2
  • 30
    • 0028713365 scopus 로고
    • Connectionist model combination for large vocabulary speech recognition
    • Ermioni, Greece, Sept.
    • M. M. Hochberg, G. D. Cook, S. J. Renals, A. J. Robinson, “Connectionist model combination for large vocabulary speech recognition,” in IEEE Proc. NNSP, Ermioni, Greece, Sept. 1994, pp 269-278.
    • (1994) IEEE Proc. NNSP , pp. 269-278
    • Hochberg, M.M.1    Cook, G.D.2    Renals, S.J.3    Robinson, A.J.4
  • 32
    • 0016939124 scopus 로고
    • Continuous speech recognition by statistical methods
    • Apr.
    • F. Jelinek, “Continuous speech recognition by statistical methods,” Proc. IEEE, vol. PROC-64, pp. 532-555, Apr. 1976.
    • (1976) Proc. IEEE , vol.PROC-64 , pp. 532-555
    • Jelinek, F.1
  • 33
    • 0003284920 scopus 로고
    • Serial order: a parallel distributed processing approach
    • J. L. Elman and D. E. Rumelhart, Eds. Hillside, NJ: Erlbaum
    • M. Jordan, “Serial order: a parallel distributed processing approach,” in Advances in Connectionist Theory: Speech, J. L. Elman and D. E. Rumelhart, Eds. Hillside, NJ: Erlbaum, 1989.
    • (1989) Advances in Connectionist Theory: Speech
    • Jordan, M.1
  • 34
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM algorithm,” Neural Computation, vol. 6, pp. 181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 35
    • 0022270364 scopus 로고
    • Mixture autoregressive hidden markov models for speech signals
    • June
    • B. H. Juang and L. R. Rabiner, “Mixture autoregressive hidden markov models for speech signals,” IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-33, pp. 1404-1413, June 1985.
    • (1985) IEEE Trans. Acoust., Speech, and Signal Process. , vol.ASSP-33 , pp. 1404-1413
    • Juang, B.H.1    Rabiner, L.R.2
  • 37
    • 0026271562 scopus 로고
    • New discriminative training algorithms based on the generalized probabilistic descent method
    • B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds.
    • S. Katagiri, C.-H. Lee, and B.-H. Juang, “New discriminative training algorithms based on the generalized probabilistic descent method,” IEEE Proc. NNSP, B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds., pp. 299-308, 1991.
    • (1991) IEEE Proc. NNSP , pp. 299-308
    • Katagiri, S.1    Lee, C.-H.2    Juang, B.-H.3
  • 38
    • 85064836181 scopus 로고
    • Optimal control for training: the missing link between hidden Markov models and connectionist networks
    • Brown Univ.
    • A. Kehagias, “Optimal control for training: the missing link between hidden Markov models and connectionist networks,” Division of Applied Mathematics preprint, Brown Univ., 1989.
    • (1989) Division of Applied Mathematics preprint
    • Kehagias, A.1
  • 40
    • 84936897178 scopus 로고
    • Modeling consistency in a speaker independent continuous speech recognition system
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
    • Y. Konig, N. Morgan, C. Wooters, V. Abrash, M. Cohen, and H. Franco, “Modeling consistency in a speaker independent continuous speech recognition system,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds., vol. 5, pp. 682-687, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 682-687
    • Konig, Y.1    Morgan, N.2    Wooters, C.3    Abrash, V.4    Cohen, M.5    Franco, H.6
  • 43
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network architecture for isolated word recognition,” Neural Networks, vol. 3, no. 1, pp. 23-43, 1990.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 23-43
    • Lang, K.J.1    Waibel, A.H.2    Hinton, G.E.3
  • 45
    • 0022149626 scopus 로고
    • Structural methods in automatic speech processing
    • S. E. Levinson, “Structural methods in automatic speech processing,” Proc. IEEE, vol. 73, pp. 1625-1650, 1983.
    • (1983) Proc. IEEE , vol.73 , pp. 1625-1650
    • Levinson, S.E.1
  • 46
    • 0020180460 scopus 로고
    • Maximum likelihood estimation for multivariate observations of Markov sources
    • Oct.
    • L. A. Liporace, “Maximum likelihood estimation for multivariate observations of Markov sources,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 729-734, Oct. 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.IT-28 , pp. 729-734
    • Liporace, L.A.1
  • 47
    • 0023569462 scopus 로고
    • Neural classifiers useful for speech recognition
    • San Diego, CA
    • R. Lippmann and B. Gold, “Neural classifiers useful for speech recognition,” in IEEE Proc. 1st Int. Conf. on Neural Networks, San Diego, CA, vol. 4, 1987, pp. 417-422.
    • (1987) IEEE Proc. 1st Int. Conf. on Neural Networks , vol.4 , pp. 417-422
    • Lippmann, R.1    Gold, B.2
  • 48
    • 84936526690 scopus 로고
    • Review of neural networks for speech recognition
    • R. P. Lippmann, “Review of neural networks for speech recognition,” Neural Computation, vol. 1, no. 1, pp. 1-38, 1989.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 1-38
    • Lippmann, R.P.1
  • 49
    • 85134601175 scopus 로고
    • Connected digit recognition using connectionist probability estimators and mixture-gaussian densities
    • Yokohama, Japan
    • D. M. Lubensky, A. O. Asadi, and J. M. Naik, “Connected digit recognition using connectionist probability estimators and mixture-gaussian densities,” in IEEE Proc. Int. Conf. on Spoken Language Process., Yokohama, Japan, 1994, pp. 295-298.
    • (1994) IEEE Proc. Int. Conf. on Spoken Language Process. , pp. 295-298
    • Lubensky, D.M.1    Asadi, A.O.2    Naik, J.M.3
  • 50
    • 0023857030 scopus 로고
    • Phonetic recognition using hidden Markov models and maximum mutual information for speech recognition
    • New York
    • B. Merialdo, “Phonetic recognition using hidden Markov models and maximum mutual information for speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., New York, 1988, pp. 111-114.
    • (1988) IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process. , pp. 111-114
    • Merialdo, B.1
  • 52
    • 0002595536 scopus 로고
    • Generalization and parameter estimation in feedforward nets: Some experiments
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • N. Morgan and H. Bourlard, “Generalization and parameter estimation in feedforward nets: Some experiments,” in Advances in Neural Information Processing Systems 2 D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 630-637.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 630-637
    • Morgan, N.1    Bourlard, H.2
  • 53
    • 0026824973 scopus 로고
    • The ring array processor (RAP): a multiprocessing peripheral for connectionist applications
    • special issue on neural networks
    • N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer, “The ring array processor (RAP): a multiprocessing peripheral for connectionist applications,” J. Parallel and Distrib. Computing, special issue on neural networks, vol. 14, pp. 248-259, 1992.
    • (1992) J. Parallel and Distrib. Computing , vol.14 , pp. 248-259
    • Morgan, N.1    Beck, J.2    Kohn, P.3    Bilmes, J.4    Allman, E.5    Beer, J.6
  • 54
    • 2342532903 scopus 로고
    • Hybrid neural network/hidden Markov model systems for continuous speech recognition
    • special issue on advances in pattern recognition systems using neural networks, I. Guyon and P. Wang, Eds.
    • N. Morgan, H. Bourlard, S. Renals, M. Cohen, and H. Franco, “Hybrid neural network/hidden Markov model systems for continuous speech recognition,” Int. J. Patt. Recog. and Artif. Intell., special issue on advances in pattern recognition systems using neural networks, I. Guyon and P. Wang, Eds., vol. 7, no. 4, 1993.
    • (1993) Int. J. Patt. Recog. and Artif. Intell. , vol.7 , Issue.4
    • Morgan, N.1    Bourlard, H.2    Renals, S.3    Cohen, M.4    Franco, H.5
  • 57
    • 0020796537 scopus 로고
    • A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood
    • A. Nadas, “A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood,” IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-31, pp. 814-817, 1983.
    • (1983) IEEE Trans. Acoust., Speech, and Signal Process. , vol.ASSP-31 , pp. 814-817
    • Nadas, A.1
  • 59
    • 0021406359 scopus 로고
    • The use of a one-stage dynamic programming algorithm for connected word recognition
    • H. Ney, “The use of a one-stage dynamic programming algorithm for connected word recognition,” IEEE Trans. Acoust., Speech, and Signal Process., vol. 32, pp. 263-271, 1984.
    • (1984) IEEE Trans. Acoust., Speech, and Signal Process. , vol.32 , pp. 263-271
    • Ney, H.1
  • 60
    • 0024899341 scopus 로고
    • How limited training data can allow a neural network classifier to outperform an ‘optimal’ statistical classifier
    • Glasgow, UK
    • L. Niles, H. Silverman, G. Tajchman, and M. Bush, “How limited training data can allow a neural network classifier to outperform an ‘optimal’ statistical classifier,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Glasgow, UK, 1989, pp. 17-20.
    • (1989) IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process. , pp. 17-20
    • Niles, L.1    Silverman, H.2    Tajchman, G.3    Bush, M.4
  • 65
    • 0024135866 scopus 로고
    • Isolated digit recognition experiments using the multi-layer perceptron
    • S. Peeling and R. Moore, “Isolated digit recognition experiments using the multi-layer perceptron,” Speech Commun., vol. 7, pp. 403-409, 1988.
    • (1988) Speech Commun. , vol.7 , pp. 403-409
    • Peeling, S.1    Moore, R.2
  • 66
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sept.
    • T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481-1497, Sept. 1989.
    • (1989) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 69
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb.
    • L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-285
    • Rabiner, L.R.1
  • 71
    • 0026270471 scopus 로고
    • Probability estimation by feed-forward networks in continuous speech recognition
    • Princeton, NJ, B. H. Juang, S. Y. Kung and C. A. Kann, Eds.
    • S. Renals, M. Morgan, and H. Bourlard, “Probability estimation by feed-forward networks in continuous speech recognition,” in IEEE Proc. Workshop on Neural Networks for Signal Process., Princeton, NJ, B. H. Juang, S. Y. Kung and C. A. Kann, Eds., 1991, pp. 309-318.
    • (1991) IEEE Proc. Workshop on Neural Networks for Signal Process. , pp. 309-318
    • Renals, S.1    Morgan, M.2    Bourlard, H.3
  • 74
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • no. 3
    • M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Computation, no. 3, pp. 461-483, 1991.
    • (1991) Neural Computation , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 76
    • 0000329355 scopus 로고
    • A recurrent error propagation network speech recognition system
    • no. 5
    • T. Robinson and F. Fallside, “A recurrent error propagation network speech recognition system,” Computer Speech and Language, no. 5, pp. 259-274, 1991.
    • (1991) Computer Speech and Language , pp. 259-274
    • Robinson, T.1    Fallside, F.2
  • 77
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • T. Robinson, “An application of recurrent nets to phone probability estimation,” IEEE Trans. Neural Networks, vol. 5, pp. 298-305, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 298-305
    • Robinson, T.1
  • 78
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart and J. L. McClelland, Eds. Cambridge MA: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge MA: MIT Press, 1986, vol. 1, pp. 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 79
  • 81
    • 84936903365 scopus 로고
    • oral presentation Johns Hopkins, MD
    • R. Schwartz, oral presentation, Speech Res. Symp. 13, Johns Hopkins, MD, 1993.
    • (1993) Speech Res. Symp. 13
    • Schwartz, R.1
  • 82
    • 0002297358 scopus 로고
    • Hidden Markov model induction by Bayesian model merging
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
    • A. Stolcke and S. Omohundro, “Hidden Markov model induction by Bayesian model merging,” in Advances in Neural Information Processing Systems, vol. 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Stolcke, A.1    Omohundro, S.2
  • 83
    • 0344698219 scopus 로고
    • Applications of pattern recognition technology in adaptive learning and pattern recognition systems
    • J. Mendel and K. Fu, Eds. New York, Academic
    • S. Viglione, “Applications of pattern recognition technology in adaptive learning and pattern recognition systems,” in Adaptive Learning and Pattern Recognition Systems, J. Mendel and K. Fu, Eds. New York, Academic, 1970, pp. 115-161.
    • (1970) Adaptive Learning and Pattern Recognition Systems , pp. 115-161
    • Viglione, S.1
  • 85
    • 84890051788 scopus 로고
    • Learning phonetic features using connectionist networks: an experiment in speech recognition
    • R. Watrous and L. Shastri, “Learning phonetic features using connectionist networks: an experiment in speech recognition,” in Proc. 1st Int. Conf. on Neural Networks, San Diego, CA, 1987, vol. 2, pp. 619-627.
    • (1987) Proc. 1st Int. Conf. on Neural Networks, San Diego, CA , vol.2 , pp. 619-627
    • Watrous, R.1    Shastri, L.2
  • 86
    • 0023211846 scopus 로고
    • Explicit time correlation in hidden Markov models for speech recognition
    • Dallas, TX
    • C. J. Wellekens, “Explicit time correlation in hidden Markov models for speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Dallas, TX, 1987, pp. 384-386.
    • (1987) IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process. , pp. 384-386
    • Wellekens, C.J.1
  • 87
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proc. IEEE, vol. 78, pp. 1150-1160, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1150-1160
    • Werbos, P.J.1
  • 88
    • 0009056533 scopus 로고
    • Multilayer feedforward networks can learn arbitrary mappings: connectionist nonparametric regression with automatic and semi-automatic determination of network complexity
    • Univ. Calif. San Diego, Dept. Economics
    • H. White, “Multilayer feedforward networks can learn arbitrary mappings: connectionist nonparametric regression with automatic and semi-automatic determination of network complexity,” Discussion Paper, Univ. Calif. San Diego, Dept. Economics, 1988.
    • (1988) Discussion Paper
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.