-
1
-
-
0028516073
-
How do humans process and recognize speech
-
special issue on robust speech recognition Oct.
-
J. Allen, “How do humans process and recognize speech?” IEEE Trans. Speech and Audio Process., special issue on robust speech recognition, vol. 2, pp. 567-578, Oct. 1994.
-
(1994)
IEEE Trans. Speech and Audio Process.
, vol.2
, pp. 567-578
-
-
Allen, J.1
-
2
-
-
84936893028
-
A supercomputer for neural computation
-
K. AsanovicA, J. Beck, J. Feldman, N. Morgan, and J. Wawrzynek, “A supercomputer for neural computation,” Proc. ICNN, vol. 7, pp. 4462-4465, 1994.
-
(1994)
Proc. ICNN
, vol.7
, pp. 4462-4465
-
-
AsanovicA, K.1
Beck, J.2
Feldman, J.3
Morgan, N.4
Wawrzynek, J.5
-
3
-
-
0022890536
-
Maximum mutual information estimation of hidden Markov model parameters
-
Tokyo
-
L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “Maximum mutual information estimation of hidden Markov model parameters,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., 1986, Tokyo, pp. 49-52.
-
(1986)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 49-52
-
-
Bahl, L.R.1
Brown, P.F.2
de Souza, P.V.3
Mercer, R.L.4
-
4
-
-
0001862769
-
An inequality and associated maximization techniques in statistical estimation of probabilistic functions of Markov processes
-
no. 3
-
L. Baum, “An inequality and associated maximization techniques in statistical estimation of probabilistic functions of Markov processes,” Inequalities, no. 3, pp. 1-8, 1972.
-
(1972)
Inequalities
, pp. 1-8
-
-
Baum, L.1
-
5
-
-
0026835134
-
Global optimization of a neural neural network-hidden Markov model hybrid
-
Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global optimization of a neural neural network-hidden Markov model hybrid,” IEEE Trans. Neural Networks, vol. 3, pp. 252-258, 1992.
-
(1992)
IEEE Trans. Neural Networks
, vol.3
, pp. 252-258
-
-
Bengio, Y.1
De Mori, R.2
Flammia, G.3
Kompe, R.4
-
9
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
-
F. Fogelman Soulié and J. Hérault, Eds., NATO ASI Series
-
J. S. Bridle, “Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition,” in Neurocomputing: Algorithms, Architectures and Applications, F. Fogelman Soulié and J. Hérault, Eds., NATO ASI Series, pp. 227-236, 1990.
-
(1990)
Neurocomputing: Algorithms, Architectures and Applications
, pp. 227-236
-
-
Bridle, J.S.1
-
10
-
-
0025385598
-
Alpha-Nets: a recurrent neural network architecture with a hidden Markov model interpretation
-
J. S. Bridle, “Alpha-Nets: a recurrent neural network architecture with a hidden Markov model interpretation,” Speech Commun., vol. 9, pp. 83-92, 1990.
-
(1990)
Speech Commun.
, vol.9
, pp. 83-92
-
-
Bridle, J.S.1
-
12
-
-
0025623688
-
Maximum mutual information estimation of HMM parameters for continuous speech recognition using the N-best algorithm
-
Albuquerque, NM
-
Y.-L. Chow, “Maximum mutual information estimation of HMM parameters for continuous speech recognition using the N-best algorithm,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Albuquerque, NM, 1990, pp. 701-704.
-
(1990)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 701-704
-
-
Chow, Y.-L.1
-
15
-
-
0025592319
-
The DECIPHER speech recognition system
-
Albuquerque, NM
-
M. Cohen, H. Murveit, J. Bernstein, P. Price, and M. Weintraub, “The DECIPHER speech recognition system,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Albuquerque, NM, 1990, pp. 77-80.
-
(1990)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 77-80
-
-
Cohen, M.1
Murveit, H.2
Bernstein, J.3
Price, P.4
Weintraub, M.5
-
16
-
-
0000756554
-
Context-dependent multiple distribution phonetic modeling
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
-
M. Cohen, H. Franco, N. Morgan, D. Rumelhart, and V. Abrash, “Context-dependent multiple distribution phonetic modeling,” in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds., pp. 649-657, 1993.
-
(1993)
Advances in Neural Information Processing Systems 5
, pp. 649-657
-
-
Cohen, M.1
Franco, H.2
Morgan, N.3
Rumelhart, D.4
Abrash, V.5
-
17
-
-
0024861871
-
Approximation by superpositions of a sigmoid function
-
G. Cybenko, “Approximation by superpositions of a sigmoid function,” Math. Control, Signals and Syst., vol. 2, pp. 303-314, 1989.
-
(1989)
Math. Control, Signals and Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
18
-
-
84936903358
-
Customs—A load balancing system
-
Univ. Calif. Berkeley, CA, Nov.
-
A. de Boor, “Customs—A load balancing system,” Project Rep., Computer Science Div.,, Univ. Calif. Berkeley, CA, Nov. 1988.
-
(1988)
Project Rep., Computer Science Div.
-
-
de Boor, A.1
-
19
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Soc., vol. 39, pp. 1-38, 1977.
-
(1977)
J. Royal Stat. Soc.
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
20
-
-
0028234947
-
A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features
-
L. Deng and D. Sun, “A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features,” JASA, vol. 95, pp. 2702-2719, 1994.
-
(1994)
JASA
, vol.95
, pp. 2702-2719
-
-
Deng, L.1
Sun, D.2
-
22
-
-
0025547056
-
A new error criterion for posterior probability estimation with neural nets
-
San Diego, CA 185-192
-
A. El-Jaroudi and J. Makhoul, “A new error criterion for posterior probability estimation with neural nets,” in IEEE Proc. Int. Joint Conf. on Neural Networks, San Diego, CA, 1990, pp. 111:185-192.
-
(1990)
IEEE Proc. Int. Joint Conf. on Neural Networks
, pp. 111
-
-
El-Jaroudi, A.1
Makhoul, J.2
-
24
-
-
0022667694
-
Speaker independent isolated word recognizer using dynamic features of speech spectrum
-
Jan.
-
S. Furui, “Speaker independent isolated word recognizer using dynamic features of speech spectrum,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, pp. 52-59, Jan. 1986.
-
(1986)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.ASSP-34
, pp. 52-59
-
-
Furui, S.1
-
25
-
-
85028690016
-
The LIMSI continuous speech dictation system: evaluation on the ARPA Wall Street Journal Task
-
Adelaide, Australia
-
J.-L. Gauvain, L.F. Lamel, G. Adda, and M. Adda-Decker, “The LIMSI continuous speech dictation system: evaluation on the ARPA Wall Street Journal Task,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Adelaide, Australia, 1994, pp. I-557-560.
-
(1994)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. I-557-I-560
-
-
Gauvain, J.-L.1
Lamel, L.F.2
Adda, G.3
Adda-Decker, M.4
-
26
-
-
0025671510
-
A probabilistic approach to the understanding and training of neural network classifiers
-
Albuquerque, NM
-
H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in IEEE Proc. Int. Conf. on Acoust., Speech and Signal Process., Albuquerque, NM, 1990, pp. 1361-1364.
-
(1990)
IEEE Proc. Int. Conf. on Acoust., Speech and Signal Process.
, pp. 1361-1364
-
-
Gish, H.1
-
28
-
-
85017287487
-
Linear discriminant analysis for improved large vocabulary continuous speech recognition
-
San Francisco, CA
-
R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large vocabulary continuous speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., San Francisco, CA, 1992, pp. I-13-16.
-
(1992)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. I-13-I-16
-
-
Haeb-Umbach, R.1
Ney, H.2
-
29
-
-
0011948879
-
Connectionist architectures for multi-speaker phoneme recognition
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
J. Hampshire and A. Waibel, “Connectionist architectures for multi-speaker phoneme recognition,” in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.
-
(1990)
Advances in Neural Information Processing Systems 2
-
-
Hampshire, J.1
Waibel, A.2
-
30
-
-
0028713365
-
Connectionist model combination for large vocabulary speech recognition
-
Ermioni, Greece, Sept.
-
M. M. Hochberg, G. D. Cook, S. J. Renals, A. J. Robinson, “Connectionist model combination for large vocabulary speech recognition,” in IEEE Proc. NNSP, Ermioni, Greece, Sept. 1994, pp 269-278.
-
(1994)
IEEE Proc. NNSP
, pp. 269-278
-
-
Hochberg, M.M.1
Cook, G.D.2
Renals, S.J.3
Robinson, A.J.4
-
32
-
-
0016939124
-
Continuous speech recognition by statistical methods
-
Apr.
-
F. Jelinek, “Continuous speech recognition by statistical methods,” Proc. IEEE, vol. PROC-64, pp. 532-555, Apr. 1976.
-
(1976)
Proc. IEEE
, vol.PROC-64
, pp. 532-555
-
-
Jelinek, F.1
-
33
-
-
0003284920
-
Serial order: a parallel distributed processing approach
-
J. L. Elman and D. E. Rumelhart, Eds. Hillside, NJ: Erlbaum
-
M. Jordan, “Serial order: a parallel distributed processing approach,” in Advances in Connectionist Theory: Speech, J. L. Elman and D. E. Rumelhart, Eds. Hillside, NJ: Erlbaum, 1989.
-
(1989)
Advances in Connectionist Theory: Speech
-
-
Jordan, M.1
-
34
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM algorithm,” Neural Computation, vol. 6, pp. 181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
35
-
-
0022270364
-
Mixture autoregressive hidden markov models for speech signals
-
June
-
B. H. Juang and L. R. Rabiner, “Mixture autoregressive hidden markov models for speech signals,” IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-33, pp. 1404-1413, June 1985.
-
(1985)
IEEE Trans. Acoust., Speech, and Signal Process.
, vol.ASSP-33
, pp. 1404-1413
-
-
Juang, B.H.1
Rabiner, L.R.2
-
36
-
-
85135366718
-
The Berkeley Restaurant Project
-
Yokohama, Japan
-
D. Jurafsky, C. Wooters, G. Tajchman, J. Segal, A. Stolcke, and N. Morgan, “The Berkeley Restaurant Project,” in Proc. Int. Conf. on Spoken Language Process., Yokohama, Japan, 1994.
-
(1994)
Proc. Int. Conf. on Spoken Language Process.
-
-
Jurafsky, D.1
Wooters, C.2
Tajchman, G.3
Segal, J.4
Stolcke, A.5
Morgan, N.6
-
37
-
-
0026271562
-
New discriminative training algorithms based on the generalized probabilistic descent method
-
B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds.
-
S. Katagiri, C.-H. Lee, and B.-H. Juang, “New discriminative training algorithms based on the generalized probabilistic descent method,” IEEE Proc. NNSP, B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds., pp. 299-308, 1991.
-
(1991)
IEEE Proc. NNSP
, pp. 299-308
-
-
Katagiri, S.1
Lee, C.-H.2
Juang, B.-H.3
-
38
-
-
85064836181
-
Optimal control for training: the missing link between hidden Markov models and connectionist networks
-
Brown Univ.
-
A. Kehagias, “Optimal control for training: the missing link between hidden Markov models and connectionist networks,” Division of Applied Mathematics preprint, Brown Univ., 1989.
-
(1989)
Division of Applied Mathematics preprint
-
-
Kehagias, A.1
-
39
-
-
0025593312
-
Speaker-independent vowel classification using hidden Markov models and LVQ2
-
Albuquerque, NM
-
D. G. Kimber, M. A. Bush and G. Tajchman, “Speaker-independent vowel classification using hidden Markov models and LVQ2,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Albuquerque, NM, 1990, pp. 497-500.
-
(1990)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 497-500
-
-
Kimber, D.G.1
Bush, M.A.2
Tajchman, G.3
-
40
-
-
84936897178
-
Modeling consistency in a speaker independent continuous speech recognition system
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
-
Y. Konig, N. Morgan, C. Wooters, V. Abrash, M. Cohen, and H. Franco, “Modeling consistency in a speaker independent continuous speech recognition system,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds., vol. 5, pp. 682-687, 1993.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 682-687
-
-
Konig, Y.1
Morgan, N.2
Wooters, C.3
Abrash, V.4
Cohen, M.5
Franco, H.6
-
41
-
-
0039670397
-
Comparative experiments on large vocabulary speech recognition
-
Adelaide, Australia
-
F. Kubala, A. Anastasakos, J. Makhoul, L. Nguyen, R. Schwartz, and G. Zavaliagkos, “Comparative experiments on large vocabulary speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Adelaide, Australia, 1994, pp. I-561-564.
-
(1994)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. I-561-I-564
-
-
Kubala, F.1
Anastasakos, A.2
Makhoul, J.3
Nguyen, L.4
Schwartz, R.5
Zavaliagkos, G.6
-
43
-
-
0025254722
-
A time-delay neural network architecture for isolated word recognition
-
K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network architecture for isolated word recognition,” Neural Networks, vol. 3, no. 1, pp. 23-43, 1990.
-
(1990)
Neural Networks
, vol.3
, Issue.1
, pp. 23-43
-
-
Lang, K.J.1
Waibel, A.H.2
Hinton, G.E.3
-
45
-
-
0022149626
-
Structural methods in automatic speech processing
-
S. E. Levinson, “Structural methods in automatic speech processing,” Proc. IEEE, vol. 73, pp. 1625-1650, 1983.
-
(1983)
Proc. IEEE
, vol.73
, pp. 1625-1650
-
-
Levinson, S.E.1
-
46
-
-
0020180460
-
Maximum likelihood estimation for multivariate observations of Markov sources
-
Oct.
-
L. A. Liporace, “Maximum likelihood estimation for multivariate observations of Markov sources,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 729-734, Oct. 1982.
-
(1982)
IEEE Trans. Inform. Theory
, vol.IT-28
, pp. 729-734
-
-
Liporace, L.A.1
-
47
-
-
0023569462
-
Neural classifiers useful for speech recognition
-
San Diego, CA
-
R. Lippmann and B. Gold, “Neural classifiers useful for speech recognition,” in IEEE Proc. 1st Int. Conf. on Neural Networks, San Diego, CA, vol. 4, 1987, pp. 417-422.
-
(1987)
IEEE Proc. 1st Int. Conf. on Neural Networks
, vol.4
, pp. 417-422
-
-
Lippmann, R.1
Gold, B.2
-
48
-
-
84936526690
-
Review of neural networks for speech recognition
-
R. P. Lippmann, “Review of neural networks for speech recognition,” Neural Computation, vol. 1, no. 1, pp. 1-38, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.1
, pp. 1-38
-
-
Lippmann, R.P.1
-
49
-
-
85134601175
-
Connected digit recognition using connectionist probability estimators and mixture-gaussian densities
-
Yokohama, Japan
-
D. M. Lubensky, A. O. Asadi, and J. M. Naik, “Connected digit recognition using connectionist probability estimators and mixture-gaussian densities,” in IEEE Proc. Int. Conf. on Spoken Language Process., Yokohama, Japan, 1994, pp. 295-298.
-
(1994)
IEEE Proc. Int. Conf. on Spoken Language Process.
, pp. 295-298
-
-
Lubensky, D.M.1
Asadi, A.O.2
Naik, J.M.3
-
50
-
-
0023857030
-
Phonetic recognition using hidden Markov models and maximum mutual information for speech recognition
-
New York
-
B. Merialdo, “Phonetic recognition using hidden Markov models and maximum mutual information for speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., New York, 1988, pp. 111-114.
-
(1988)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 111-114
-
-
Merialdo, B.1
-
52
-
-
0002595536
-
Generalization and parameter estimation in feedforward nets: Some experiments
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
N. Morgan and H. Bourlard, “Generalization and parameter estimation in feedforward nets: Some experiments,” in Advances in Neural Information Processing Systems 2 D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 630-637.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 630-637
-
-
Morgan, N.1
Bourlard, H.2
-
53
-
-
0026824973
-
The ring array processor (RAP): a multiprocessing peripheral for connectionist applications
-
special issue on neural networks
-
N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer, “The ring array processor (RAP): a multiprocessing peripheral for connectionist applications,” J. Parallel and Distrib. Computing, special issue on neural networks, vol. 14, pp. 248-259, 1992.
-
(1992)
J. Parallel and Distrib. Computing
, vol.14
, pp. 248-259
-
-
Morgan, N.1
Beck, J.2
Kohn, P.3
Bilmes, J.4
Allman, E.5
Beer, J.6
-
54
-
-
2342532903
-
Hybrid neural network/hidden Markov model systems for continuous speech recognition
-
special issue on advances in pattern recognition systems using neural networks, I. Guyon and P. Wang, Eds.
-
N. Morgan, H. Bourlard, S. Renals, M. Cohen, and H. Franco, “Hybrid neural network/hidden Markov model systems for continuous speech recognition,” Int. J. Patt. Recog. and Artif. Intell., special issue on advances in pattern recognition systems using neural networks, I. Guyon and P. Wang, Eds., vol. 7, no. 4, 1993.
-
(1993)
Int. J. Patt. Recog. and Artif. Intell.
, vol.7
, Issue.4
-
-
Morgan, N.1
Bourlard, H.2
Renals, S.3
Cohen, M.4
Franco, H.5
-
55
-
-
0010606377
-
Stochastic perceptual auditory-event-based models for speech recognition
-
Oct.
-
N. Morgan, H. Bourlard, S. Greenberg, and H. Hermansky, “Stochastic perceptual auditory-event-based models for speech recognition,” Int. Conf. on Spoken Language Process., pp. 1943-1946, Oct. 1994.
-
(1994)
Int. Conf. on Spoken Language Process.
, pp. 1943-1946
-
-
Morgan, N.1
Bourlard, H.2
Greenberg, S.3
Hermansky, H.4
-
56
-
-
84936903362
-
Stochastic perceptual models of speech
-
to be published
-
N. Morgan, H. Bourlard, S. Greenberg, and H. Hermansky, “Stochastic perceptual models of speech,” IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., to be published.
-
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
-
-
Morgan, N.1
Bourlard, H.2
Greenberg, S.3
Hermansky, H.4
-
57
-
-
0020796537
-
A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood
-
A. Nadas, “A decision-theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood,” IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-31, pp. 814-817, 1983.
-
(1983)
IEEE Trans. Acoust., Speech, and Signal Process.
, vol.ASSP-31
, pp. 814-817
-
-
Nadas, A.1
-
58
-
-
0008748091
-
A hybrid HMM-MLP speaker verification algorithm for telephone speech
-
Adelaide, Australia
-
J. M. Naik and D. M. Lubensky, “A hybrid HMM-MLP speaker verification algorithm for telephone speech,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Adelaide, Australia, 1994, pp. I-153-156.
-
(1994)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. I-153-I-156
-
-
Naik, J.M.1
Lubensky, D.M.2
-
59
-
-
0021406359
-
The use of a one-stage dynamic programming algorithm for connected word recognition
-
H. Ney, “The use of a one-stage dynamic programming algorithm for connected word recognition,” IEEE Trans. Acoust., Speech, and Signal Process., vol. 32, pp. 263-271, 1984.
-
(1984)
IEEE Trans. Acoust., Speech, and Signal Process.
, vol.32
, pp. 263-271
-
-
Ney, H.1
-
60
-
-
0024899341
-
How limited training data can allow a neural network classifier to outperform an ‘optimal’ statistical classifier
-
Glasgow, UK
-
L. Niles, H. Silverman, G. Tajchman, and M. Bush, “How limited training data can allow a neural network classifier to outperform an ‘optimal’ statistical classifier,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Glasgow, UK, 1989, pp. 17-20.
-
(1989)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 17-20
-
-
Niles, L.1
Silverman, H.2
Tajchman, G.3
Bush, M.4
-
61
-
-
0025592386
-
Combining hidden Markov models and neural network classifiers
-
Albuquerque, NM
-
L. Niles and H. Silverman, “Combining hidden Markov models and neural network classifiers,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Albuquerque, NM, 1990, pp. 417-420.
-
(1990)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 417-420
-
-
Niles, L.1
Silverman, H.2
-
62
-
-
0001560479
-
MMIE training for large vocabulary continuous speech recognition
-
Yokohama, Japan
-
Y. Normandin, R. Lacouture, and R. Cardin, “MMIE training for large vocabulary continuous speech recognition,” in Proc. Int. Conf. on Spoken Language Process., Yokohama, Japan, 1994, pp. 1367-1370.
-
(1994)
Proc. Int. Conf. on Spoken Language Process.
, pp. 1367-1370
-
-
Normandin, Y.1
Lacouture, R.2
Cardin, R.3
-
63
-
-
0026400228
-
On the interaction between true source, training, and testing language models
-
Toronto, Canada
-
D. B. Paul, J. K. Baker, and J. M. Baker, “On the interaction between true source, training, and testing language models,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Toronto, Canada, 1991, pp. 569-572.
-
(1991)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 569-572
-
-
Paul, D.B.1
Baker, J.K.2
Baker, J.M.3
-
64
-
-
0027151528
-
The Lincoln large-vocabulary stack-decoder HMM CSR
-
Minneapolis, MN
-
D. Paul and B. Necioglu, “The Lincoln large-vocabulary stack-decoder HMM CSR,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., vol. 2, Minneapolis, MN, 1993, pp. 660-663.
-
(1993)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, vol.2
, pp. 660-663
-
-
Paul, D.1
Necioglu, B.2
-
65
-
-
0024135866
-
Isolated digit recognition experiments using the multi-layer perceptron
-
S. Peeling and R. Moore, “Isolated digit recognition experiments using the multi-layer perceptron,” Speech Commun., vol. 7, pp. 403-409, 1988.
-
(1988)
Speech Commun.
, vol.7
, pp. 403-409
-
-
Peeling, S.1
Moore, R.2
-
66
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481-1497, Sept. 1989.
-
(1989)
Proc. IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
67
-
-
84985742249
-
Linear predictive hidden Markov models and the speech signal
-
Paris
-
A. B. Poritz, “Linear predictive hidden Markov models and the speech signal,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Paris, 1982, pp. 1291-1294.
-
(1982)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 1291-1294
-
-
Poritz, A.B.1
-
68
-
-
0022879621
-
On hidden Markov models in isolated word recognition
-
Tokyo, Japan
-
A. B. Poritz and A. L. Richter, “On hidden Markov models in isolated word recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Tokyo, Japan, 1986, pp. 14. 3.1-4.
-
(1986)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 14.3.1-14.3.4
-
-
Poritz, A.B.1
Richter, A.L.2
-
69
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Feb.
-
L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-285
-
-
Rabiner, L.R.1
-
71
-
-
0026270471
-
Probability estimation by feed-forward networks in continuous speech recognition
-
Princeton, NJ, B. H. Juang, S. Y. Kung and C. A. Kann, Eds.
-
S. Renals, M. Morgan, and H. Bourlard, “Probability estimation by feed-forward networks in continuous speech recognition,” in IEEE Proc. Workshop on Neural Networks for Signal Process., Princeton, NJ, B. H. Juang, S. Y. Kung and C. A. Kann, Eds., 1991, pp. 309-318.
-
(1991)
IEEE Proc. Workshop on Neural Networks for Signal Process.
, pp. 309-318
-
-
Renals, S.1
Morgan, M.2
Bourlard, H.3
-
72
-
-
85009890950
-
Connectionist probability estimation in the decipher speech recognition system
-
San Francisco, CA
-
S. Renals, N. Morgan, M. Cohen, and H. Franco, “Connectionist probability estimation in the decipher speech recognition system,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., San Francisco, CA, 1992, pp. 601-604.
-
(1992)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 601-604
-
-
Renals, S.1
Morgan, N.2
Cohen, M.3
Franco, H.4
-
73
-
-
0028194709
-
Connectionist probability estimators in HMM speech recognition
-
Jan.
-
S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco, “Connectionist probability estimators in HMM speech recognition,” IEEE Trans. Speech and Audio Process., vol. 2, pp. 161-174, Jan. 1994.
-
(1994)
IEEE Trans. Speech and Audio Process.
, vol.2
, pp. 161-174
-
-
Renals, S.1
Morgan, N.2
Bourlard, H.3
Cohen, M.4
Franco, H.5
-
74
-
-
0001595997
-
Neural network classifiers estimate Bayesian a posteriori probabilities
-
no. 3
-
M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Computation, no. 3, pp. 461-483, 1991.
-
(1991)
Neural Computation
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
75
-
-
0039047853
-
-
Tech. Rep. CUED/F-INFENG/TR42, Eng. Dept., Cambridge Univ., UK
-
T. Robinson and F. Fallside, “Phoneme recognition from the TIMIT database using recurrent error propagation networks,” Tech. Rep. CUED/F-INFENG/TR42, Eng. Dept., Cambridge Univ., UK, 1990.
-
(1990)
“Phoneme recognition from the TIMIT database using recurrent error propagation networks,”
-
-
Robinson, T.1
Fallside, F.2
-
76
-
-
0000329355
-
A recurrent error propagation network speech recognition system
-
no. 5
-
T. Robinson and F. Fallside, “A recurrent error propagation network speech recognition system,” Computer Speech and Language, no. 5, pp. 259-274, 1991.
-
(1991)
Computer Speech and Language
, pp. 259-274
-
-
Robinson, T.1
Fallside, F.2
-
77
-
-
0028392167
-
An application of recurrent nets to phone probability estimation
-
T. Robinson, “An application of recurrent nets to phone probability estimation,” IEEE Trans. Neural Networks, vol. 5, pp. 298-305, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 298-305
-
-
Robinson, T.1
-
78
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge MA: MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge MA: MIT Press, 1986, vol. 1, pp. 318-362.
-
(1986)
Parallel Distributed Processing
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
79
-
-
33747725832
-
On-line cursive script recognition using neural networks and hidden Markov models
-
Adelaide, Australia
-
M. Schenkel, I. Guyon, and D. Henderson, “On-line cursive script recognition using neural networks and hidden Markov models,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Adelaide, Australia, 1994, pp. II.637-640.
-
(1994)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. II.637-II.640
-
-
Schenkel, M.1
Guyon, I.2
Henderson, D.3
-
80
-
-
84936903364
-
On-line cursive script recognition using time delay neural networks and hidden Markov models
-
R. Plamondon, Ed., to be published
-
M. Schenkel, I. Guyon, and D. Henderson, “On-line cursive script recognition using time delay neural networks and hidden Markov models,” Special issue of Mach. Vision and Applications on Cursive Script Recognition, R. Plamondon, Ed., to be published.
-
Special issue of Mach. Vision and Applications on Cursive Script Recognition
-
-
Schenkel, M.1
Guyon, I.2
Henderson, D.3
-
81
-
-
84936903365
-
-
oral presentation Johns Hopkins, MD
-
R. Schwartz, oral presentation, Speech Res. Symp. 13, Johns Hopkins, MD, 1993.
-
(1993)
Speech Res. Symp. 13
-
-
Schwartz, R.1
-
82
-
-
0002297358
-
Hidden Markov model induction by Bayesian model merging
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
-
A. Stolcke and S. Omohundro, “Hidden Markov model induction by Bayesian model merging,” in Advances in Neural Information Processing Systems, vol. 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
-
-
Stolcke, A.1
Omohundro, S.2
-
83
-
-
0344698219
-
Applications of pattern recognition technology in adaptive learning and pattern recognition systems
-
J. Mendel and K. Fu, Eds. New York, Academic
-
S. Viglione, “Applications of pattern recognition technology in adaptive learning and pattern recognition systems,” in Adaptive Learning and Pattern Recognition Systems, J. Mendel and K. Fu, Eds. New York, Academic, 1970, pp. 115-161.
-
(1970)
Adaptive Learning and Pattern Recognition Systems
, pp. 115-161
-
-
Viglione, S.1
-
84
-
-
0023833469
-
Phoneme recognition: neural networks vs. hidden Markov models
-
A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition: neural networks vs. hidden Markov models,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., New York, 1988, vol. 1, pp. 107-110.
-
(1988)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., New York
, vol.1
, pp. 107-110
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.J.5
-
85
-
-
84890051788
-
Learning phonetic features using connectionist networks: an experiment in speech recognition
-
R. Watrous and L. Shastri, “Learning phonetic features using connectionist networks: an experiment in speech recognition,” in Proc. 1st Int. Conf. on Neural Networks, San Diego, CA, 1987, vol. 2, pp. 619-627.
-
(1987)
Proc. 1st Int. Conf. on Neural Networks, San Diego, CA
, vol.2
, pp. 619-627
-
-
Watrous, R.1
Shastri, L.2
-
86
-
-
0023211846
-
Explicit time correlation in hidden Markov models for speech recognition
-
Dallas, TX
-
C. J. Wellekens, “Explicit time correlation in hidden Markov models for speech recognition,” in IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process., Dallas, TX, 1987, pp. 384-386.
-
(1987)
IEEE Proc. Int. Conf. on Acoust., Speech, and Signal Process.
, pp. 384-386
-
-
Wellekens, C.J.1
-
87
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proc. IEEE, vol. 78, pp. 1150-1160, 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1150-1160
-
-
Werbos, P.J.1
-
88
-
-
0009056533
-
Multilayer feedforward networks can learn arbitrary mappings: connectionist nonparametric regression with automatic and semi-automatic determination of network complexity
-
Univ. Calif. San Diego, Dept. Economics
-
H. White, “Multilayer feedforward networks can learn arbitrary mappings: connectionist nonparametric regression with automatic and semi-automatic determination of network complexity,” Discussion Paper, Univ. Calif. San Diego, Dept. Economics, 1988.
-
(1988)
Discussion Paper
-
-
White, H.1
-
89
-
-
84926060821
-
Large vocabulary continuous speech recognition using HTK
-
Adelaide, Australia
-
P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young, “Large vocabulary continuous speech recognition using HTK,” in IEEE Proc. Int. Conf. on Acoust, Speech, and Signal Process., Adelaide, Australia, 1994, pp. II-125-128.
-
(1994)
IEEE Proc. Int. Conf. on Acoust, Speech, and Signal Process.
, pp. II-125-II-128
-
-
Woodland, P.C.1
Odell, J.J.2
Valtchev, V.3
Young, S.J.4
|