메뉴 건너뛰기




Volumn 33, Issue 3, 1995, Pages 562-578

Classification of Multisensor Remote-Sensing Images by Structured Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ERROR BACKPROPAGATION; MULTISENSOR REMOTE SENSING IMAGES; STRUCTURED NEURAL NETWORKS; TRIAL AND ERROR PROCESS;

EID: 0029307334     PISSN: 01962892     EISSN: 15580644     Source Type: Journal    
DOI: 10.1109/36.387573     Document Type: Article
Times cited : (131)

References (39)
  • 2
    • 0024903852 scopus 로고
    • Applications of neural networks to terrain classification
    • Washington D.C.
    • S. E. Decatur, “Applications of neural networks to terrain classification,” in Proc. Int. Joint Conf. Neural Networks, Washington D.C., 1989, vol. 1, pp. 283–288.
    • (1989) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 283-288
    • Decatur, S.E.1
  • 3
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote-sensing data
    • July
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network approaches versus statistical methods in classification of multisource remote-sensing data,” IEEE Trans. Geosci. Remote Sensing, vol. 28, pp. 540–552, July 1990.
    • (1990) IEEE Trans. Geosci. Remote Sensing , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 4
    • 0026868031 scopus 로고
    • Multispectral classification of Landsat-images using neural networks
    • May
    • H. Bischof, W. Schneider, and A. J. Pinz, “Multispectral classification of Landsat-images using neural networks,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 482–490, May 1992.
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , pp. 482-490
    • Bischof, H.1    Schneider, W.2    Pinz, A.J.3
  • 7
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • J. W. Shavlik, R. J. Mooney, and G. G. Towell, “Symbolic and neural learning algorithms: An experimental comparison,” Machine Learning, vol. 6, pp. 111–143, 1991.
    • (1991) Machine Learning , vol.6 , pp. 111-143
    • Shavlik, J.W.1    Mooney, R.J.2    Towell, G.G.3
  • 8
    • 0026897995 scopus 로고
    • Statistically controlled activation weight initialization (SCAWI)
    • July
    • G. P. Drago and S. Ridella, “Statistically controlled activation weight initialization (SCAWI),” IEEE Trans. Neural Networks, vol. 3, pp. 627–631, July 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 627-631
    • Drago, G.P.1    Ridella, S.2
  • 9
    • 0024001872 scopus 로고
    • From numbers to symbols to knowledge structures: Artificial intelligence perspectives on the classification task
    • May/June
    • B. Chandrasekaran and A. Goel, “From numbers to symbols to knowledge structures: Artificial intelligence perspectives on the classification task,” IEEE Trans. Syst. Man Cybernet., vol. 18, no. 3, May/June 1988, pp. 415–424.
    • (1988) IEEE Trans. Syst. Man Cybernet. , vol.18 , Issue.3 , pp. 415-424
    • Chandrasekaran, B.1    Goel, A.2
  • 11
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Jan.
    • P. D. Heermann and N. Khazenie, “Classification of multispectral remote sensing data using a back-propagation neural network,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 81–88, Jan. 1992.
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 12
    • 0027595914 scopus 로고
    • Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods
    • May
    • Y. Salu and J. Tilton, “Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods,” IEEE Trans. Geosci. Remote Sensing, vol. 31, pp. 606–617, May 1993.
    • (1993) IEEE Trans. Geosci. Remote Sensing , vol.31 , pp. 606-617
    • Salu, Y.1    Tilton, J.2
  • 13
    • 0025445409 scopus 로고
    • Parallel, self-organizing, hierarchical neural networks
    • June
    • O. K. Ersoy and D. Hong, “Parallel, self-organizing, hierarchical neural networks, IEEE Trans. Neural Networks, vol. 1, pp. 167–178, June 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 167-178
    • Ersoy, O.K.1    Hong, D.2
  • 15
    • 0042470428 scopus 로고
    • Robust construction neural networks for classification of remotely sensed data
    • Portland, OR July 11–15
    • J. N. Hwang, S. R. Lay, and R. Kiang, “Robust construction neural networks for classification of remotely sensed data,” in Proc. World Congress on Neural Networks, Portland, OR, July 11–15, 1993, vol. 4, pp. 580–584.
    • (1993) Proc. World Congress on Neural Networks , vol.4 , pp. 580-584
    • Hwang, J.N.1    Lay, S.R.2    Kiang, R.3
  • 16
    • 0027554401 scopus 로고
    • Terrain classification in sar images using principal components analysis and neural networks
    • Mar.
    • M. R. Azimi-Sadjadi, S. Ghaloum, and R. Zoughi, “Terrain classification in sar images using principal components analysis and neural networks,” IEEE Trans. Geosci. Remote Sensing, vol. 31, no. 2, pp. 511–515, Mar. 1993.
    • (1993) IEEE Trans. Geosci. Remote Sensing , vol.31 , Issue.2 , pp. 511-515
    • Azimi-Sadjadi, M.R.1    Ghaloum, S.2    Zoughi, R.3
  • 17
    • 84935408681 scopus 로고
    • Neural networks classifiers based on geocoded data and multispectral images for satellite image interpretation
    • Budapest, Hungary
    • L. Mascarilla, E. H. Zahazah, and J. Desachy, “Neural networks classifiers based on geocoded data and multispectral images for satellite image interpretation,” in Proc. 5th Int. Conf., CAIP '93, Budapest, Hungary, 1993, pp. 830–837.
    • (1993) Proc. 5th Int. Conf., CAIP '93 , pp. 830-837
    • Mascarilla, L.1    Zahazah, E.H.2    Desachy, J.3
  • 20
    • 0026837224 scopus 로고
    • A machine learning method for generation of a neural network architecture: A continuous ID3 algorithm
    • Mar.
    • K. J. Cios and N. L. Ning, “A machine learning method for generation of a neural network architecture: A continuous ID3 algorithm,” IEEE Trans. Neural Networks, vol. 3, no. 2, pp. 280–291, Mar. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.2 , pp. 280-291
    • Cios, K.J.1    Ning, N.L.2
  • 22
    • 0000854380 scopus 로고
    • Rule-based neural networks for classification and probability estimation
    • R. M. Goodman, C. M. Higgins, J. W. Miller, and P. Smyth, “Rule-based neural networks for classification and probability estimation,” Neural Computation, vol. 4, pp. 781–804, 1992.
    • (1992) Neural Computation , vol.4 , pp. 781-804
    • Goodman, R.M.1    Higgins, C.M.2    Miller, J.W.3    Smyth, P.4
  • 23
    • 0026760021 scopus 로고
    • Fuzzy-set-based hierarchical networks for information fusion in computer vision
    • R. Krishnapuram and J. Lee, “Fuzzy-set-based hierarchical networks for information fusion in computer vision,” Neural Networks, vol. 5, no. 2, pp. 335–350, 1992.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 335-350
    • Krishnapuram, R.1    Lee, J.2
  • 24
    • 0023331258 scopus 로고
    • An introduction to computing with neural networks
    • Apr.
    • R. P. Lippmann, “An introduction to computing with neural networks,” IEEE Acoust., Speech Signal Processing Mag., vol. 4, pp. 4–22, Apr. 1987.
    • (1987) IEEE Acoust., Speech Signal Processing Mag. , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 26
    • 0009438133 scopus 로고
    • Preface to the special issue on connectionist symbol processing
    • Nov.
    • G. E. Hinton, “Preface to the special issue on connectionist symbol processing,” Artificial Intelligence, vol. 46, no. 1–2, pp. 1–4, Nov. 1990.
    • (1990) Artificial Intelligence , vol.46 , Issue.1-2 , pp. 1-4
    • Hinton, G.E.1
  • 28
    • 0013412808 scopus 로고
    • Class-sensitive neural network
    • Silver Spring, MD: Dynamic Publ.
    • C. H. Chen and G. H. You, “Class-sensitive neural network,” Neural Parallel & Scientific Computations, vol. 1. Silver Spring, MD: Dynamic Publ.: 1993, pp. 93–96.
    • (1993) Neural Parallel & Scientific Computations , vol.1 , pp. 93-96
    • Chen, C.H.1    You, G.H.2
  • 29
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Apr. 3–6
    • H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in Proc. 1990 Int. Conf. Acoust., Speech, Signal Processing, Apr. 3–6, 1990, pp. 1361–1364.
    • (1990) Proc. 1990 Int. Conf. Acoust., Speech, Signal Processing , pp. 1361-1364
    • Gish, H.1
  • 32
    • 0027800666 scopus 로고
    • Structured neural networks for the classification of multisensor remote-sensing images
    • Aug.
    • S. B. Serpico, F. Roli, P. Pellegretti, and G. Vernazza, “Structured neural networks for the classification of multisensor remote-sensing images,” Int. Geosci. Remote Sensing Symp., Tokyo, vol. 2, Aug. 1993, pp. 907–909.
    • (1993) Int. Geosci. Remote Sensing Symp., Tokyo , vol.2 , pp. 907-909
    • Serpico, S.B.1    Roli, F.2    Pellegretti, P.3    Vernazza, G.4
  • 35
    • 0141868717 scopus 로고
    • Data representation in neural nets: An empirical study
    • Touretsky, Hinton, and Senjnowki, Eds. San Mateo, CA: Morgan Kaufmann
    • P. J. Hancock, “Data representation in neural nets: An empirical study,” in Touretsky, Hinton, and Senjnowki, Eds., Proc. 1988 Connectionist Models Summer School, San Mateo, CA: Morgan Kaufmann, 1988, pp. 11–20.
    • (1988) Proc. 1988 Connectionist Models Summer School , pp. 11-20
    • Hancock, P.J.1
  • 36
    • 0001160588 scopus 로고
    • What size network gives valid generalization
    • E. B. Baum and D. Haussler, “What size network gives valid generalization,” Neural Computation, vol. 1, pp. 151–160, 1989.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 38
    • 0025402179 scopus 로고
    • Fuzzy supervised classification of remote sensing images
    • Mar.
    • F. Wang, “Fuzzy supervised classification of remote sensing images,” IEEE Trans. on Geosci. Remote Sensing, vol. 28, pp. 194–201, Mar. 1990.
    • (1990) IEEE Trans. on Geosci. Remote Sensing , vol.28 , pp. 194-201
    • Wang, F.1
  • 39
    • 0024737615 scopus 로고
    • Multisensor integration and fusion in intelligent systems
    • Sept./Oct.
    • R. C. Luo and M. Gray, “Multisensor integration and fusion in intelligent systems,” IEEE Trans. Syst. Man Cybernet., vol. 19, pp. 901–931, Sept./Oct. 1989.
    • (1989) IEEE Trans. Syst. Man Cybernet. , vol.19 , pp. 901-931
    • Luo, R.C.1    Gray, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.