-
1
-
-
0027701431
-
Future technological and economic prospects for VLSI
-
Nov.
-
H. Komiya, M. Yoshimoto, and H. Ishikura, “Future technological and economic prospects for VLSI,” IEICE Trans. Electron., vol. E76-C, no. 11, pp. 1555–1563, Nov. 1993.
-
(1993)
IEICE Trans. Electron.
, vol.E76-C
, Issue.11
, pp. 1555-1563
-
-
Komiya, H.1
Yoshimoto, M.2
Ishikura, H.3
-
2
-
-
0027879328
-
High performance 0.1 µm CMOS devices with 1.5 V power supply
-
Y. Taur S. Wind, Y. J. Mii, Y. Lid, D. My, K. A. Jenkins, C. L. Hen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Po1cari, “High performance 0.1 µm CMOS devices with 1.5 V power supply,” IEDM Tech. Dig., pp. 127–130, 1993.
-
(1993)
IEDM Tech. Dig.
, pp. 127-130
-
-
Taur, Y.1
Wind, S.2
Mii, Y.J.3
Lid, Y.4
My, D.5
Jenkins, K.A.6
Hen, C.L.7
Coane, P.J.8
Klaus, D.9
Bucchignano, J.10
Rosenfield, M.11
Thomson, M.G.R.12
Po1cari, M.13
-
3
-
-
84941448723
-
Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's
-
Oct.
-
G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, E. Ganin, S. Rishton, D. S. Zicherman, H. Schmid, M. R. Po1cari, H. Y. Ng, P. J. Restle, T. H. P. Chang, and R. H. Dennard, “Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's,” IEEE Electron Device Lett., vol. 8, no. 10, pp. 463–466, Oct. 1987.
-
(1987)
IEEE Electron Device Lett.
, vol.8
, Issue.10
, pp. 463-466
-
-
Sai-Halasz, G.A.1
Wordeman, M.R.2
Kern, D.P.3
Ganin, E.4
Rishton, S.5
Zicherman, D.S.6
Schmid, H.7
Po1cari, M.R.8
Ng, H.Y.9
Restle, P.J.10
Chang, T.H.P.11
Dennard, R.H.12
-
4
-
-
0024073264
-
High transconductance and velocity overshoot in NMOS devices at the 0.1-µm gate-length level
-
Sept.
-
G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, “High transconductance and velocity overshoot in NMOS devices at the 0.1 -µm gate-length level,” IEEE Electron Device Lett., vol. 9, no. 9, pp. 464–466, Sept. 1988.
-
(1988)
IEEE Electron Device Lett.
, vol.9
, Issue.9
, pp. 464-466
-
-
Sai-Halasz, G.A.1
Wordeman, M.R.2
Kern, D.P.3
Rishton, S.4
Ganin, E.5
-
5
-
-
0025455892
-
Experimental technology and performance of0.1-µm-gate-length FET's operated at liquid-nitrogen temperature
-
July
-
G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, E. Ganin, T. H. P. Chang, and R. H. Dennard, “Experimental technology and performance of 0.1-µm-gate-length FET's operated at liquid-nitrogen temperature,” IBM J. Res. Develop., vol. 34, no. 4, pp. 452–465, July 1990.
-
(1990)
IBM J. Res. Develop.
, vol.34
, Issue.4
, pp. 452-465
-
-
Sai-Halasz, G.A.1
Wordeman, M.R.2
Kern, D.P.3
Rishton, S.4
Ganin, E.5
Chang, T.H.P.6
Dennard, R.H.7
-
6
-
-
0027845137
-
Room temperature 0.1 µm CMOS technology with 11.8 ps gate delay
-
K. F. Lee, R. H. Yan, D. Y. Jeon, G. M. Chin, Y. O. Kim, D. M. Tennant, B. Razavi, H. D. Lin, Y. G. Wey, E. H. Westerwick, M. D. Morris, R. W. Johnson, T. M. Liu, M. Tarsia, M. Cerullo, R. G. Swartz, and A. Ourmazd, “Room temperature 0.1 µm CMOS technology with 11.8 ps gate delay,” IEDM Tech. Dig., pp. 131–134, 1993.
-
(1993)
IEDM Tech. Dig.
, pp. 131-134
-
-
Lee, K.F.1
Yan, R.H.2
Jeon, D.Y.3
Chin, G.M.4
Kim, Y.O.5
Tennant, D.M.6
Razavi, B.7
Lin, H.D.8
Wey, Y.G.9
Westerwick, E.H.10
Morris, M.D.11
Johnson, R.W.12
Liu, T.M.13
Tarsia, M.14
Cerullo, M.15
Swartz, R.G.16
Ourmazd, A.17
-
7
-
-
0027878002
-
Sub-50 nm gate length N-MOSFET's with 10 nm phosphorus source and drain junctions
-
M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, “Sub-50 nm gate length N-MOSFET's with 10 nm phosphorus source and drain junctions,” IEDM Tech. Dig., pp. 119–122, 1993.
-
(1993)
IEDM Tech. Dig.
, pp. 119-122
-
-
Ono, M.1
Saito, M.2
Yoshitomi, T.3
Fiegna, C.4
Ohguro, T.5
Iwai, H.6
-
8
-
-
0027004804
-
High speed 0.1 µm CMOS devices operating at room Temperature
-
Tsukuba
-
A. Toriumi, T. Mizuno, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto, S. Inaba, I. Mori, and M. Yoshimi, “High speed 0.1 µm CMOS devices operating at room Temperature,” in Int. Conf. Solid State Devices and Materials, Tsukuba, 1992, pp. 487–489.
-
(1992)
Int. Conf. Solid State Devices and Materials
, pp. 487-489
-
-
Toriumi, A.1
Mizuno, T.2
Iwase, M.3
Takahashi, M.4
Niiyama, H.5
Fukumoto, M.6
Inaba, S.7
Mori, I.8
Yoshimi, M.9
-
9
-
-
0027816863
-
Threshold voltage controlled 0.1-μm MOSFET utilizing inversion layer as extreme shallow source/drain
-
H. Noda, F. Murai, and S. Kimura, “Threshold voltage controlled 0.1-μm MOSFET utilizing inversion layer as extreme shallow source/drain,” IEDM Tech. Dig., pp. 123–126, 1993.
-
(1993)
IEDM Tech. Dig.
, pp. 123-126
-
-
Noda, H.1
Murai, F.2
Kimura, S.3
-
10
-
-
77953132069
-
Hot-carrier effects in 0.1 µm gate length CMOS devices
-
T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto, and M. Yoshmi, “Hot-carrier effects in 0.1 µm gate length CMOS devices,” IEDM Tech. Dig., pp. 695–698, 1992.
-
(1992)
IEDM Tech. Dig.
, pp. 695-698
-
-
Mizuno, T.1
Toriumi, A.2
Iwase, M.3
Takahashi, M.4
Niiyama, H.5
Fukumoto, M.6
Yoshmi, M.7
-
12
-
-
0024069051
-
Efficient and accurate use of the energy transport method in device simulation
-
Sept.
-
N. Goldsman and J. Frey, “Efficient and accurate use of the energy transport method in device simulation,” IEEE Trans. Electron Devices, vol. 35, no. 9, pp. 1524–1529, Sept. 1988.
-
(1988)
IEEE Trans. Electron Devices
, vol.35
, Issue.9
, pp. 1524-1529
-
-
Goldsman, N.1
Frey, J.2
-
13
-
-
0026171611
-
An evaluation of energy transport models for silicon device simulation
-
June
-
T. J. Bordelon, X.-L. Wang, C. M. Maziar, and A. F. Tasch, “An evaluation of energy transport models for silicon device simulation,” Solid-State Electron., vol. 34, no. 6, pp. 617–628, June 1991.
-
(1991)
Solid-State Electron.
, vol.34
, Issue.6
, pp. 617-628
-
-
Bordelon, T.J.1
Wang, X.-L.2
Maziar, C.M.3
Tasch, A.F.4
-
14
-
-
0022044296
-
An investigation of steady-state velocity overshoot in silicon
-
Apr.
-
G. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in silicon,” Solid-State Electron., vol. 28, no. 4, pp. 407–416, Apr. 1985.
-
(1985)
Solid-State Electron.
, vol.28
, Issue.4
, pp. 407-416
-
-
Baccarani, G.1
Wordeman, M.R.2
-
15
-
-
0027881053
-
An improved hydrodynamic transport model for silicon
-
Aug.
-
T.-W. Tang, S. Ramaswamy, and J. Nam, “An improved hydrodynamic transport model for silicon,” IEEE Trans. Electron Devices, vol. 40, no. 8, pp. 1469–1477, Aug. 1993.
-
(1993)
IEEE Trans. Electron Devices
, vol.40
, Issue.8
, pp. 1469-1477
-
-
Tang, T.-W.1
Ramaswamy, S.2
Nam, J.3
-
16
-
-
0026735256
-
An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects
-
Jan.
-
D. Chen, E. C. Kan, U. Ravaioli, C.-W. Shu, and R. W. Dutton, “An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects,” IEEE Electron Device Lett., vol. 13, no. 1, pp. 26-28 Jan. 1992.
-
(1992)
IEEE Electron Device Lett.
, vol.13
, Issue.1
, pp. 26-28
-
-
Chen, D.1
Kan, E.C.2
Ravaioli, U.3
Shu, C.-W.4
Dutton, R.W.5
-
17
-
-
0023965768
-
A new discretization strategy of the semiconductor equations comprising momentum and energy balance
-
Feb.
-
A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani, “A new discretization strategy of the semiconductor equations comprising momentum and energy balance,” IEEE Trans. Computer-Aided Design, vol. 7, no. 2, pp. 231–242, Feb. 1988.
-
(1988)
IEEE Trans. Computer-Aided Design
, vol.7
, Issue.2
, pp. 231-242
-
-
Forghieri, A.1
Guerrieri, R.2
Ciampolini, P.3
Gnudi, A.4
Rudan, M.5
Baccarani, G.6
-
18
-
-
0024071891
-
Simulation of submicrometer GaAs MES-FET's using a full dynamic transport model
-
Sept.
-
Y.-K. Feng and A. Hintz, “Simulation of submicrometer GaAs MES-FET's using a full dynamic transport model,” IEEE Trans. Electron Devices, vol. 35, no. 9, pp. 1419–1431, Sept. 1988.
-
(1988)
IEEE Trans. Electron Devices
, vol.35
, Issue.9
, pp. 1419-1431
-
-
Feng, Y.-K.1
Hintz, A.2
-
19
-
-
0025578252
-
An efficient nonparabolic formulation of the hydrodynamic model for silicon device simulation
-
T. J. Bordelon, X.-L. Wang, C. M. Maziar, and A. F. Tasch, “An efficient nonparabolic formulation of the hydrodynamic model for silicon device simulation,” IEDM Tech. Dig., pp. 353–356, 1990.
-
(1990)
IEDM Tech. Dig.
, pp. 353-356
-
-
Bordelon, T.J.1
Wang, X.-L.2
Maziar, C.M.3
Tasch, A.F.4
-
20
-
-
0024718053
-
MOS device modeling at 77K
-
Aug.
-
S. Selberherr, “MOS device modeling at 77K,” IEEE Trans. Electron Devices, vol. 36, no. 8, pp. 1464–1474, Aug. 1989.
-
(1989)
IEEE Trans. Electron Devices
, vol.36
, Issue.8
, pp. 1464-1474
-
-
Selberherr, S.1
-
21
-
-
0026172097
-
An analytical formulation of the length coefficient for the augmented drift-diffusion model including velocity overshoot
-
June
-
D. Chen, E. C. Kan, and U. Ravaioli, “An analytical formulation of the length coefficient for the augmented drift-diffusion model including velocity overshoot,” IEEE Trans. Electron Devices, vol. 38, no. 6, June 1991.
-
(1991)
IEEE Trans. Electron Devices
, vol.38
, Issue.6
-
-
Chen, D.1
Kan, E.C.2
Ravaioli, U.3
-
22
-
-
0017466066
-
A simple two-dimensional model for IGFET operation in the saturation region
-
Mar.
-
Y. A. El-Mansy and A. R. Boothroyd, “A simple two-dimensional model for IGFET operation in the saturation region,” IEEE Trans. Electron Devices, vol. 24, no. 3, pp. 254–262, Mar. 1977.
-
(1977)
IEEE Trans. Electron Devices
, vol.24
, Issue.3
, pp. 254-262
-
-
El-Mansy, Y.A.1
Boothroyd, A.R.2
-
23
-
-
0026384103
-
MISNAN-A physically based continuous MOSFET model for CAD applications
-
Dec.
-
A. R. Boothroyd, A. W. Tarasewicz, and C. Slaby, “MISNAN-A physically based continuous MOSFET model for CAD applications,” IEEE Trans. Computer-Aided Design, vol. 10, no. 12, Dec. 1991.
-
(1991)
IEEE Trans. Computer-Aided Design
, vol.10
, Issue.12
-
-
Boothroyd, A.R.1
Tarasewicz, A.W.2
Slaby, C.3
-
24
-
-
84944378023
-
A parametric short-channel MOS transistor model for subthreshold and strong inversion current
-
Feb.
-
T. Grotjohn and B. Hoefflinger, “A parametric short-channel MOS transistor model for subthreshold and strong inversion current,” IEEE Trans. Electron Devices, vol. 31, no. 2, pp. 234–246, Feb. 1984.
-
(1984)
IEEE Trans. Electron Devices
, vol.31
, Issue.2
, pp. 234-246
-
-
Grotjohn, T.1
Hoefflinger, B.2
-
25
-
-
0026854046
-
An analytical delayed-turn-off model for buried channel PMOS devices operating at 77K
-
Apr.
-
J. H. Sim and J. B. Kuo, “An analytical delayed-turn-off model for buried channel PMOS devices operating at 77K,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 939–947, Apr. 1992.
-
(1992)
IEEE Trans. Electron Devices
, vol.39
, Issue.4
, pp. 939-947
-
-
Sim, J.H.1
Kuo, J.B.2
-
26
-
-
0027187367
-
Threshold voltage model for deep-submicrometer MOSFET's
-
Jan.
-
Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P. K. Ko, and Y. C. Cheng, “Threshold voltage model for deep-submicrometer MOSFET's,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 86–95, J an. 1994.
-
(1994)
IEEE Trans. Electron Devices
, vol.40
, Issue.1
, pp. 86-95
-
-
Liu, Z.-H.1
Hu, C.2
Huang, J.-H.3
Chan, T.-Y.4
Jeng, M.-C.5
Ko, P.K.6
Cheng, Y.C.7
-
27
-
-
0026399115
-
Analytical device model for submicrometer MOSFET's
-
Dec.
-
K. Sonoda, K. Taniguchi, and C. Hamaguchi, “Analytical device model for submicrometer MOSFET's,” IEEE Trans. Electron Devices, vol. 38, no. 12, pp. 2662–2668, Dec. 1991.
-
(1991)
IEEE Trans. Electron Devices
, vol.38
, Issue.12
, pp. 2662-2668
-
-
Sonoda, K.1
Taniguchi, K.2
Hamaguchi, C.3
-
28
-
-
0027239315
-
Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFET's
-
Jan.
-
T. A. Fjeldly and M. Shur, “Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFET's,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 137–145, Jan. 1993.
-
(1993)
IEEE Trans. Electron Devices
, vol.40
, Issue.1
, pp. 137-145
-
-
Fjeldly, T.A.1
Shur, M.2
|