-
2
-
-
0020464111
-
A simplified neuron as a principal component analyzer
-
E. Oja, “A simplified neuron as a principal component analyzer,” J. Math. Biology, vol. 15, pp. 267-273, 1982.
-
(1982)
J. Math. Biology
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
3
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459-473, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 459-473
-
-
Sanger, T.D.1
-
4
-
-
0024936898
-
Adaptive network for optimal linear feature extraction
-
Washington, DC
-
P. Foldiak, “Adaptive network for optimal linear feature extraction,” in Int. Joint Conf. Neural Networks, Washington, DC, 1989, pp. 1401-1406.
-
(1989)
Int. Joint Conf. Neural Networks
, pp. 1401-1406
-
-
Foldiak, P.1
-
5
-
-
0025623681
-
A neural network learning algorithm for adaptive principal component extraction
-
Albuquerque,Apr.
-
S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction,” in Proc. ICASSP, Albuquerque, Apr. 1990, pp. 861-864.
-
(1990)
Proc. ICASSP
, pp. 861-864
-
-
Kung, S.Y.1
Diamantaras, K.I.2
-
8
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
H. Bourland and Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition,” Biological Cybernetics, vol. 59, pp. 291-294, 1988.
-
(1988)
Biological Cybernetics
, vol.59
, pp. 291-294
-
-
Bourland, H.1
Kamp, Y.2
-
9
-
-
84944990594
-
An adaptive approach for optimal data reduction using recursive least squares learning method
-
San Francisco, CA,May
-
S. Bannour and M. R. Azimi-Sadjadi, “An adaptive approach for optimal data reduction using recursive least squares learning method,” in Proc. ICASSP 92), San Francisco, CA, May 23-26, 1992, pp. 11-297-300
-
(1992)
Proc. ICASSP 92)
, pp. 11-297
-
-
Bannour, S.1
Azimi-Sadjadi, M.R.2
-
10
-
-
0026290237
-
Principal component extraction using recursive least squares learning method
-
Singapore,Nov.
-
“Principal component extraction using recursive least squares learning method,” in Proc. 1991 Int. Joint Conf. Neural Networks (IJCNN 91), pp. 2110-2115, Singapore, Nov. 1991
-
(1991)
Proc. 1991 Int. Joint Conf. Neural Networks (IJCNN 91)
, pp. 2110-2115
-
-
-
13
-
-
0024774330
-
Neural networks and principal component analysis: Learning from examples without local minima
-
P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53-58, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 53-58
-
-
Baldi, P.1
Hornik, K.2
-
15
-
-
0026821991
-
Detection and classification of barried dielectric anomalies using a seperated aperture sensor and a neural network discriminator
-
Feb.
-
M. R. Azimi-Sadjadi, D. E. Poole, S. Sheedvash, K. D. Sherbondy, and S. A. Strieker, “Detection and classification of barried dielectric anomalies using a seperated aperture sensor and a neural network discriminator,” IEEE Trans. on Instrum. Meas. vol. 41, no. 1, pp. 137-143, Feb. 1991.
-
(1991)
IEEE Trans. on Instrum. Meas. vol. 41
, vol.41
, Issue.1
, pp. 137-143
-
-
Azimi-Sadjadi, M.R.1
Poole, D.E.2
Sheedvash, S.3
Sherbondy, K.D.4
Strieker, S.A.5
-
16
-
-
0001539879
-
Some fundamental properties of speckle
-
Nov.
-
J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am., vol. 6, pp. 1145-1150, Nov. 1976.
-
(1976)
J. Opt. Soc. Am.
, vol.6
, pp. 1145-1150
-
-
Goodman, J.W.1
-
17
-
-
0026221563
-
Two-dimensional adaptive block Kalman filtering of SAR imagery
-
Sept.
-
M. R. Azimi-Sadjadi and S. Bannour, “Two-dimensional adaptive block Kalman filtering of SAR imagery,” IEEE Trans. on Geosc. Remote Sensing, vol. 29, no. 5, pp. 742-753, Sept. 1991.
-
(1991)
IEEE Trans. on Geosc. Remote Sensing
, vol.29
, Issue.5
, pp. 742-753
-
-
Azimi-Sadjadi, M.R.1
Bannour, S.2
-
18
-
-
0026679034
-
A comparison of two-eigen-networks
-
Seattle, WA, July
-
F. Palmieri and J. Zhu, “A comparison of two-eigen-networks,” in Proc. IJCNN, pp. 193-199, Seattle, WA, July 1991.
-
(1991)
Proc. IJCNN
, pp. 193-199
-
-
Palmieri, F.1
Zhu, J.2
|