-
1
-
-
0024169851
-
An algorithm for nonconservative stability bounds computation for systems with nonlinearly correlated parametric uncertainties
-
Austin, TX
-
A. Vicino, A. Tesi, and M. Milanese, “An algorithm for nonconservative stability bounds computation for systems with nonlinearly correlated parametric uncertainties,” in Proc. 27th Conf. Decision Contr., Austin, TX, vol. 3, 1988, pp. 1761-1766.
-
(1988)
Proc. 27th Conf. Decision Contr.
, vol.3
, pp. 1761-1766
-
-
Vicino, A.1
Tesi, A.2
Milanese, M.3
-
2
-
-
1542356419
-
Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems
-
Inform. Syst. Lab., Stanford Univ.
-
V. Balakrishnan, S. Boyd, and S. Balemi, “Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems,” Tech. Rep., Inform. Syst. Lab., Stanford Univ., 1991.
-
(1991)
Tech. Rep.
-
-
Balakrishnan, V.1
Boyd, S.2
Balemi, S.3
-
3
-
-
0001725233
-
Asymptotic stability of an equilibrium position of a family of systems of linear differential equations
-
V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential Equations, vol. 14, pp. 1483-1485, 1979.
-
(1979)
Differential Equations
, vol.14
, pp. 1483-1485
-
-
Kharitonov, V.L.1
-
4
-
-
0023859609
-
Root locations of an entire polytope of polynomials: It suffices to check the edges
-
Signals, Syst
-
A. C. Bartlett, C. V. Hollot, and L. Huang, “Root locations of an entire polytope of polynomials: It suffices to check the edges,” Math. Contr., Signals, Syst., vol. 1, pp. 61-71, 1989.
-
(1989)
Math. Contr.
, vol.1
, pp. 61-71
-
-
Bartlett, A.C.1
Hollot, C.V.2
Huang, L.3
-
5
-
-
0024663245
-
Polytopes of polynomials with zeros in a prescribed set
-
May
-
M. Fu and B. R. Barmish, “Polytopes of polynomials with zeros in a prescribed set,” IEEE Trans. Automat. Contr., vol. 34, pp. 544-546, May 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 544-546
-
-
Fu, M.1
Barmish, B.R.2
-
6
-
-
0024629409
-
A generalization of Kharitonov's theorem for robust stability of interval plant
-
H. Chapellat and S. P. Bhattacharyya, “A generalization of Kharitonov's theorem for robust stability of interval plant,” IEEE Trans. Automat. Contr., vol. 34, pp. 306-312, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 306-312
-
-
Chapellat, H.1
Bhattacharyya, S.P.2
-
7
-
-
0024765605
-
Robust stability of polynomials with multilinear parametric dependence
-
F. J. Kraus, M. Mansour, and B. D. O. Anderson, “Robust stability of polynomials with multilinear parametric dependence,” Int. J. Contr., vol. 50, pp. 1745-1762, 1989.
-
(1989)
Int. J. Contr.
, vol.50
, pp. 1745-1762
-
-
Kraus, F.J.1
Mansour, M.2
Anderson, B.D.O.3
-
8
-
-
0025481128
-
Robust stability of a class of polynomials with coefficients depending multilinearly on perturbations
-
B. R. Barmish and Z. Shi, “Robust stability of a class of polynomials with coefficients depending multilinearly on perturbations,” IEEE Trans. Automat. Contr., vol. 35, pp. 1040-1043, 1990.
-
(1990)
IEEE Trans. Automat. Contr.
, vol.35
, pp. 1040-1043
-
-
Barmish, B.R.1
Shi, Z.2
-
9
-
-
0023963752
-
Exact calculation of the multiloop stability margin
-
Feb.
-
R. R. E. de Gaston and M. G. Safonov, “Exact calculation of the multiloop stability margin,” IEEE Trans. Automat. Contr., vol. 33, pp. 156-171, Feb. 1988.
-
(1988)
IEEE Trans. Automat. Contr.
, vol.33
, pp. 156-171
-
-
de Gaston, R.R.E.1
Safonov, M.G.2
-
10
-
-
0024178141
-
New tools for robustness analysis
-
Austin, TX
-
B. R. Barmish, “New tools for robustness analysis,” in Proc. 27th Conf. Decis. Contr., Austin, TX, vol. 1, 1988, pp. 1-6.
-
(1988)
Proc. 27th Conf. Decis. Contr.
, vol.1
, pp. 1-6
-
-
Barmish, B.R.1
-
11
-
-
0024908153
-
An overview of recent results on the parametric approach to robust stability
-
Tampa, FL
-
M. P. Polis, A. W. Olbrot, and M. Fu, “An overview of recent results on the parametric approach to robust stability,” in Proc. 28th IEEE Conf. Decis. Contr., Tampa, FL, 1989.
-
(1989)
Proc. 28th IEEE Conf. Decis. Contr.
-
-
Polis, M.P.1
Olbrot, A.W.2
Fu, M.3
-
12
-
-
0024610765
-
A generalization of Kharitonov's four polynomial concept for robust stability problems with linear dependent coefficient perturbations
-
B. R. Barmish, “A generalization of Kharitonov's four polynomial concept for robust stability problems with linear dependent coefficient perturbations,” IEEE Trans. Automat. Contr., vol. 34, pp. 157-165, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 157-165
-
-
Barmish, B.R.1
-
13
-
-
84941521192
-
Kharitonov's theorem and a graphical stability test for linear time-invariant systems
-
M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum
-
J. J. Anagnost, C. A. Desoer, and R. J. Minnichelli, “Kharitonov's theorem and a graphical stability test for linear time-invariant systems,” in Robustness in Identification and Control, M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum, 1989.
-
(1989)
Robustness in Identification and Control
-
-
Anagnost, J.J.1
Desoer, C.A.2
Minnichelli, R.J.3
-
14
-
-
0026141602
-
Frequency domain conditions for the robust stability of linear and nonlinear dynamic systems
-
S. Dasgupta, P. J. Parker, B. D. O. Anderson, F. J. Kraus, and M. Mansour, “Frequency domain conditions for the robust stability of linear and nonlinear dynamic systems,” IEEE Trans. Circuits Syst., vol. 38, pp. 389-397, 1991.
-
(1991)
IEEE Trans. Circuits Syst.
, vol.38
, pp. 389-397
-
-
Dasgupta, S.1
Parker, P.J.2
Anderson, B.D.O.3
Kraus, F.J.4
Mansour, M.5
-
15
-
-
0024177857
-
Strong Kharitonov theorem for discrete systems
-
Austin, TX
-
M. Mansour, F. Kraus, and B. D. O. Anderson, “Strong Kharitonov theorem for discrete systems,” in Proc. 27th Conf. Decision Contr., Austin, TX, vol. 1, 1988, pp. 106-111.
-
(1988)
Proc. 27th Conf. Decision Contr.
, vol.1
, pp. 106-111
-
-
Mansour, M.1
Kraus, F.2
Anderson, B.D.O.3
-
16
-
-
0024732504
-
The minimal dimension of stable faces required to guarantee stability of a matrix polytope
-
J. D. Cobb and C. L. Demarco, “The minimal dimension of stable faces required to guarantee stability of a matrix polytope,” IEEE Trans. Automat. Contr., vol. 34, pp. 990-992, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 990-992
-
-
Cobb, J.D.1
Demarco, C.L.2
-
17
-
-
0025465136
-
Computing the frequency response of a transfer function with parametric perturbations
-
M. Fu, “Computing the frequency response of a transfer function with parametric perturbations,” Syst. Contr. Lett., vol. 15, pp. 45-52, 1990.
-
(1990)
Syst. Contr. Lett.
, vol.15
, pp. 45-52
-
-
Fu, M.1
-
18
-
-
0011239792
-
Polytopes of polynomials with zeros in a prescribed region: New criteria and algorithms
-
M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum
-
M. Fu, “Polytopes of polynomials with zeros in a prescribed region: New criteria and algorithms,” in Robustness in Identification and Control, M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum, 1989.
-
(1989)
Robustness in Identification and Control
-
-
Fu, M.1
-
19
-
-
0024714933
-
Robust stability for time-delay systems: The edge theorem and graphical tests
-
M. Fu, A. W. Olbrot, and M. P. Polis, “Robust stability for time-delay systems: The edge theorem and graphical tests,” IEEE Trans. Automat. Contr., vol. 34, pp. 813-821, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 813-821
-
-
Fu, M.1
Olbrot, A.W.2
Polis, M.P.3
-
20
-
-
0027698086
-
Minimality, stabilizability and strong stabilizability of uncertain plants
-
Nov.
-
G. Chockalingam and S. Dasgupta, “Minimality, stabilizability and strong stabilizability of uncertain plants,” IEEE Trans. Automat. Contr., vol. 38, pp. 1651-1661, Nov. 1993.
-
(1993)
IEEE Trans. Automat. Contr.
, vol.38
, pp. 1651-1661
-
-
Chockalingam, G.1
Dasgupta, S.2
-
21
-
-
72649089829
-
A finite zero exclusion principle
-
Amsterdam, Netherlands
-
A. Rantzer, “A finite zero exclusion principle,” in Proc. MTNS, Amsterdam, Netherlands, 1989, pp. 239-245.
-
(1989)
Proc. MTNS
, pp. 239-245
-
-
Rantzer, A.1
-
22
-
-
0020207181
-
Quantitative feedback theory
-
part D
-
I. Horowitz, “Quantitative feedback theory,” Proc. IEE, part D, vol. 129, pp. 215-226, 1982.
-
(1982)
Proc. IEE
, vol.129
, pp. 215-226
-
-
Horowitz, I.1
-
23
-
-
0026850830
-
Does it suffice to check a subset of multilinear parameters in robustness analysis?
-
J. Ackermann, “Does it suffice to check a subset of multilinear parameters in robustness analysis?,” IEEE Trans. Automat. Contr., vol. 37, 487-488, 1992.
-
(1992)
IEEE Trans. Automat. Contr.
, vol.37
, pp. 487-488
-
-
Ackermann, J.1
-
24
-
-
0026673736
-
Stability margins for multivariable interval control systems
-
Brighton, England
-
H. Chapellat, L. H. Keel, and S. P. Bhattacharya, “Stability margins for multivariable interval control systems,” in Proc. 30th Conf. Decision Contr., Brighton, England, 1991, pp. 894-899.
-
(1991)
Proc. 30th Conf. Decision Contr.
, pp. 894-899
-
-
Chapellat, H.1
Keel, L.H.2
Bhattacharya, S.P.3
-
25
-
-
0023417852
-
Robust pole assignment
-
Y. C. Soh, R. J. Evans, I. R. Petersen, and R. J. Betz, “Robust pole assignment,” Automatica, vol. 23, no. 5, pp. 601-610, 1987.
-
(1987)
Automatica
, vol.23
, Issue.5
, pp. 601-610
-
-
Soh, Y.C.1
Evans, R.J.2
Petersen, I.R.3
Betz, R.J.4
-
26
-
-
0011716502
-
Robustness analysis of multilinear perturbations
-
M. Mansour, S. Balemi, and W. Tuol, Eds. Monte Verita, Birkhauser, Verlag Basel
-
B. T. Polyak, “Robustness analysis of multilinear perturbations,” in Robustness of Dynamic Systems with Parameter Uncertainties, M. Mansour, S. Balemi, and W. Tuol, Eds. Monte Verita, Birkhauser, Verlag Basel, 1992, pp. 93-104.
-
(1992)
Robustness of Dynamic Systems with Parameter Uncertainties
, pp. 93-104
-
-
Polyak, B.T.1
-
27
-
-
0029209731
-
Easily testable sufficient conditions for the robust stability of systems with multilinear parameter dependence
-
to be published
-
B. D. O. Anderson, F. J. Kraus, M. Mansour, and S. Dasgupta, “Easily testable sufficient conditions for the robust stability of systems with multilinear parameter dependence,” Automatica, to be published, 1995.
-
(1995)
Automatica
-
-
Anderson, B.D.O.1
Kraus, F.J.2
Mansour, M.3
Dasgupta, S.4
-
28
-
-
0025235770
-
Necessary and sufficient condition for robust stability of a continuous system—The continuous dependency case illustrated via multilinear dependency
-
Jan.
-
E. Zeheb, “Necessary and sufficient condition for robust stability of a continuous system—The continuous dependency case illustrated via multilinear dependency,” IEEE Trans. Circuits Syst., vol. 37, pp. 47-53, Jan. 1990.
-
(1990)
IEEE Trans. Circuits Syst.
, vol.37
, pp. 47-53
-
-
Zeheb, E.1
|