-
1
-
-
0040267909
-
Perfect channel splitting by use of interpolation/decimation/tree decomposition technique
-
A. Croisier, D. Esteben, and C. Galand, “Perfect channel splitting by use of interpolation/decimation/tree decomposition technique,” in Int. Conf. Inform. Sci. Syst., 1976, pp. 443-446.
-
(1976)
Int. Conf. Inform. Sci. Syst.
, pp. 443-446
-
-
Croisier, A.1
Esteben, D.2
Galand, C.3
-
3
-
-
0025244687
-
Multirate digital filters, filter banks, polyphase network, and applications: A tutorial
-
Jan.
-
P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase network, and applications: A tutorial,” Proc. IEEE, vol. 78, pp. 56-93, Jan. 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 56-93
-
-
Vaidyanathan, P.P.1
-
4
-
-
0022739248
-
Exact reconstruction techniques for tree-structured subband coders
-
June
-
M. J. T. Smith and T. P. Barnwell III, “Exact reconstruction techniques for tree-structured subband coders,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, pp. 434-441, June 1986.
-
(1986)
IEEE Trans. Acoust.Speech, Signal Process
, vol.34
, pp. 434-441
-
-
Smith, M.J.T.1
Barnwell, T.P.2
-
5
-
-
0022694921
-
Filter banks allowing perfect reconstruction
-
Apr.
-
M. Vetterli, “Filter banks allowing perfect reconstruction,” Signal Process., vol. 10, pp. 219-244, Apr. 1986.
-
(1986)
Signal Process
, vol.10
, pp. 219-244
-
-
Vetterli, M.1
-
6
-
-
0023327065
-
Theory and design of M-channel maximally-decimated quadrature mirror filters with arbitrary M, having perfect-reconstruction property
-
Apr.,Speech, Signal Process
-
P. P. Vaidyanathan, “Theory and design of M-channel maximally-decimated quadrature mirror filters with arbitrary M, having perfect-reconstruction property,” IEEE Trans. Acoust., Speech, Signal Process., vol. 35, pp. 476-492, Apr. 1987.
-
(1987)
IEEE Trans. Acoust.Speech, Signal Process
, vol.35
, pp. 476-492
-
-
Vaidyanathan, P.P.1
-
7
-
-
0023164707
-
A new filter bank theory for time-frequency representation
-
Mar.
-
M. J. T. Smith and T. P. Barnwell III, “A new filter bank theory for time-frequency representation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 35, pp. 314-327, Mar. 1987.
-
(1987)
IEEE Trans. Acoust.Speech, Signal Process
, vol.35
, pp. 314-327
-
-
Smith, M.J.T.1
Barnwell, T.P.2
-
8
-
-
0022010971
-
Quadrature mirror filter design for an arbitrary number of equal bandwidth channels
-
Feb.
-
P. L. Chu, “Quadrature mirror filter design for an arbitrary number of equal bandwidth channels,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, pp. 203-218, Feb. 1985.
-
(1985)
IEEE Trans. Acoust.Speech, Signal Process
, vol.33
, pp. 203-218
-
-
Chu, P.L.1
-
9
-
-
84989468570
-
A method for designing parallel type pseudo minimum phase FIR QMF banks
-
Nov.
-
T. Takebe and T. Yoshida, “A method for designing parallel type pseudo minimum phase FIR QMF banks,” Trans. IEICE, vol. J73-A, pp. 1823-1831, Nov. 1990.
-
(1990)
Trans. IEICE
, vol.j73-A
, pp. 1823-1831
-
-
Takebe, T.1
Yoshida, T.2
-
11
-
-
0022793106
-
The design of uniformly and nonuniformly spaced pseudoquadrature mirror filter banks
-
Oct.
-
R. V. Cox, “The design of uniformly and nonuniformly spaced pseudoquadrature mirror filter banks,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, pp. 1090-1096, Oct. 1986.
-
(1986)
IEEE Trans. Acoust.Speech, Signal Process
, vol.34
, pp. 1090-1096
-
-
Cox, R.V.1
-
12
-
-
84943727501
-
A recursive filter banks with nonsymmetric frequency bands to the origin
-
Nov.
-
S. Wada and S. Takahashi, “A recursive filter banks with nonsymmetric frequency bands to the origin,” in Int. Symp. Inform. Theory Applicat., Nov. 1990, pp. 607-610.
-
(1990)
Int. Symp. Inform. Theory Applicat.
, pp. 607-610
-
-
Wada, S.1
Takahashi, S.2
-
13
-
-
0013391309
-
The design and applications of digital filters with complex coefficients
-
Sept.
-
T. H. Crystal and L. Ehrman, “The design and applications of digital filters with complex coefficients,” IEEE Trans. Audio, Electroacoust., vol. 16, pp. 315-320, Sept. 1968.
-
(1968)
IEEE Trans. Audio, Electroacoust
, vol.16
, pp. 315-320
-
-
Crystal, T.H.1
Ehrman, L.2
|