-
1
-
-
0022214129
-
Wigner-Ville spectral analysis of nonstationary processes
-
Dec.
-
W. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, pp. 1461–1470, Dec. 1985.
-
(1985)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-33
, pp. 1461-1470
-
-
Martin, W.1
Flandrin, P.2
-
2
-
-
0001969528
-
The Wigner-Ville spectrum of nonstationary random signals
-
W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
-
P. Flandrin and W. Martin, “The Wigner-Ville spectrum of nonstationary random signals,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
-
(1995)
The Wigner Distribution—Theory and Applications in Signal Processing
-
-
Flandrin, P.1
Martin, W.2
-
3
-
-
0019054579
-
The Wigner distribution—A tool for time-frequency signal analysis, Part I
-
T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The Wigner distribution—A tool for time-frequency signal analysis, Part I,” Philips J. Res., vol. 35, pp. 217–250, 1980.
-
(1980)
Philips J. Res.
, vol.35
, pp. 217-250
-
-
Claasen, T.A.C.M.1
Mecklenbräuker, W.F.G.2
-
4
-
-
0004615396
-
The interference structure of the Wigner distribution and related time-frequency signal representations
-
W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
-
F. Hlawatsch and P. Flandrin, “The interference structure of the Wigner distribution and related time-frequency signal representations,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
-
(1995)
The Wigner Distribution—Theory and Applications in Signal Processing
-
-
Hlawatsch, F.1
Flandrin, P.2
-
5
-
-
0028712892
-
Correlative time-frequency analysis and classification of nonstationary random processes
-
(Philadelphia, PA, Oct.)
-
W. Kozek, F. Hlawatsch, H. Kirchauer, and U. Trautwein, “Correlative time-frequency analysis and classification of nonstationary random processes,” in Proc. IEEE-SP Int. Symp. on Time-Frequency Time-Scale Analysis (Philadelphia, PA, Oct. 1994), pp. 417–420.
-
(1994)
Proc. IEEE-SP Int. Symp. on Time-Frequency Time-Scale Analysis
, pp. 417-420
-
-
Kozek, W.1
Hlawatsch, F.2
Kirchauer, H.3
Trautwein, U.4
-
6
-
-
84938013953
-
When is the Wigner-Ville spectrum non-negative?
-
I. T. Young et al., Eds. Amsterdam, The Netherlands: North Holland
-
P. Flandrin, “When is the Wigner-Ville spectrum non-negative?” in Signal Processing III: Theories and Applications, I. T. Young et al., Eds. Amsterdam, The Netherlands: North Holland, 1986, pp. 239–242.
-
(1986)
Signal Processing III: Theories and Applications
, pp. 239-242
-
-
Flandrin, P.1
-
7
-
-
0004065599
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
L. E. Franks, Signal Theory. Englewood Cliffs, NJ: Prentice-Hall, 1969.
-
(1969)
Signal Theory
-
-
Franks, L.E.1
-
8
-
-
0028709941
-
Time-frequency projection filters and time-frequency signal expansions
-
Dec.
-
F. Hlawatsch and W. Kozek, “Time-frequency projection filters and time-frequency signal expansions,” IEEE Trans. Signal Process., vol. 42, no. 12, Dec. 1994.
-
(1994)
IEEE Trans. Signal Process
, vol.42
, Issue.12
-
-
Hlawatsch, F.1
Kozek, W.2
-
9
-
-
0022733740
-
Time-varying filtering and signal estimation using Wigner distribution synthesis techniques
-
June
-
G. F. Boudreaux-Bartels and T. W. Parks, “Time-varying filtering and signal estimation using Wigner distribution synthesis techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, pp. 442–451, June 1986.
-
(1986)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-34
, pp. 442-451
-
-
Boudreaux-Bartels, G.F.1
Parks, T.W.2
-
10
-
-
0026817815
-
Bilinear signal synthesis
-
Feb.
-
F. Hlawatsch and W. Krattenthaler, “Bilinear signal synthesis,” IEEE Trans. Signal Process., vol. 40, no. 2, pp. 352–363, Feb. 1992.
-
(1992)
IEEE Trans. Signal Process
, vol.40
, Issue.2
, pp. 352-363
-
-
Hlawatsch, F.1
Krattenthaler, W.2
-
11
-
-
33746835528
-
Signal synthesis algorithms for bilinear time-frequency signal representations
-
W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
-
F. Hlawatsch and W. Krattenthaler, “Signal synthesis algorithms for bilinear time-frequency signal representations,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
-
(1995)
The Wigner Distribution—Theory and Applications in Signal Processing
-
-
Hlawatsch, F.1
Krattenthaler, W.2
-
12
-
-
0005739972
-
Time-varying signal processing using Wigner distribution synthesis techniques
-
W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
-
G. F. Boudreaux-Bartels, “Time-varying signal processing using Wigner distribution synthesis techniques,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
-
(1995)
The Wigner Distribution—Theory and Applications in Signal Processing
-
-
Boudreaux-Bartels, G.F.1
-
15
-
-
0026938327
-
Time—frequency signal processing based on the Wigner—Weyl framework
-
Oct.
-
W. Kozek, “Time—frequency signal processing based on the Wigner—Weyl framework,” Signal Process., vol. 29, no. 1, pp. 77–92, Oct. 1992.
-
(1992)
Signal Process
, vol.29
, Issue.1
, pp. 77-92
-
-
Kozek, W.1
-
16
-
-
0028378193
-
The Weyl correspondence and time-frequency analysis
-
Feb.
-
R. G. Shenoy and T. W. Parks, “The Weyl correspondence and time-frequency analysis,” IEEE Trans. Signal Process., vol. 42, no. 2, pp. 318–332, Feb. 1994.
-
(1994)
IEEE Trans. Signal Process
, vol.42
, Issue.2
, pp. 318-332
-
-
Shenoy, R.G.1
Parks, T.W.2
-
17
-
-
0024777625
-
Wigner weight functions and Weyl symbols of non-negative definite linear operators
-
A. J. E. M. Janssen, “Wigner weight functions and Weyl symbols of non-negative definite linear operators,” Philips J. Res., vol. 44, pp. 7–12, 1989.
-
(1989)
Philips J. Res.
, vol.44
, pp. 7-12
-
-
Janssen, A.J.E.M.1
-
19
-
-
0026727385
-
Regularity and unitarity of bilinear time-frequency signal representations
-
Jan.
-
F. Hlawatsch, “Regularity and unitarity of bilinear time-frequency signal representations,” IEEE Trans. Inform. Theory, vol. 38, no. 1, pp. 82–94, Jan. 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, Issue.1
, pp. 82-94
-
-
Hlawatsch, F.1
-
23
-
-
0019067203
-
The Wigner distribution—A tool for time-frequency signal analysis, Part II
-
T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The Wigner distribution—A tool for time-frequency signal analysis, Part II,” Philips J. Res., vol. 35, pp. 276–300, 1980.
-
(1980)
Philips J. Res.
, vol.35
, pp. 276-300
-
-
Claasen, T.A.C.M.1
Mecklenbräuker, W.F.G.2
-
24
-
-
0027210168
-
Regularity and unitarity of affine and hyperbolic time-frequency representations
-
Minneapolis, MN, Apr.
-
F. Hlawatsch, A. Papandreou, and G. F. Boudreaux-Bartles, “Regularity and unitarity of affine and hyperbolic time-frequency representations,” in Proc. IEEE ICASSP-93 (Minneapolis, MN, Apr. 1993), vol. 3, pp. 245–248.
-
(1993)
Proc. IEEE ICASSP-93
, vol.3
, pp. 245-248
-
-
Hlawatsch, F.1
Papandreou, A.2
Boudreaux-Bartles, G.F.3
-
25
-
-
0027798109
-
The hyperbolic class of quadratic time-frequency representations, Part I
-
Dec.
-
A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, “The hyperbolic class of quadratic time-frequency representations, Part I,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3425–3444, Dec. 1993.
-
(1993)
IEEE Trans. Signal Process
, vol.41
, Issue.12
, pp. 3425-3444
-
-
Papandreou, A.1
Hlawatsch, F.2
Boudreaux-Bartels, G.F.3
|