메뉴 건너뛰기




Volumn 41, Issue 1, 1995, Pages 255-267

Second-Order Time—Frequency Synthesis of Nonstationary Random Processes

Author keywords

Nonstationary random processes; process synthesis; time frequency signal processing; Wigner Ville spectrum

Indexed keywords

COMPUTER SIMULATION; DISCRETE TIME CONTROL SYSTEMS; FREQUENCY DOMAIN ANALYSIS; MATHEMATICAL MODELS; OPTIMIZATION; SIGNAL PROCESSING; SPECTRUM ANALYSIS; TIME DOMAIN ANALYSIS; TIME VARYING SYSTEMS;

EID: 0029230726     PISSN: 00189448     EISSN: 15579654     Source Type: Journal    
DOI: 10.1109/18.370103     Document Type: Article
Times cited : (12)

References (25)
  • 1
    • 0022214129 scopus 로고
    • Wigner-Ville spectral analysis of nonstationary processes
    • Dec.
    • W. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, pp. 1461–1470, Dec. 1985.
    • (1985) IEEE Trans. Acoust., Speech, Signal Process , vol.ASSP-33 , pp. 1461-1470
    • Martin, W.1    Flandrin, P.2
  • 2
    • 0001969528 scopus 로고
    • The Wigner-Ville spectrum of nonstationary random signals
    • W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
    • P. Flandrin and W. Martin, “The Wigner-Ville spectrum of nonstationary random signals,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
    • (1995) The Wigner Distribution—Theory and Applications in Signal Processing
    • Flandrin, P.1    Martin, W.2
  • 3
    • 0019054579 scopus 로고
    • The Wigner distribution—A tool for time-frequency signal analysis, Part I
    • T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The Wigner distribution—A tool for time-frequency signal analysis, Part I,” Philips J. Res., vol. 35, pp. 217–250, 1980.
    • (1980) Philips J. Res. , vol.35 , pp. 217-250
    • Claasen, T.A.C.M.1    Mecklenbräuker, W.F.G.2
  • 4
    • 0004615396 scopus 로고
    • The interference structure of the Wigner distribution and related time-frequency signal representations
    • W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
    • F. Hlawatsch and P. Flandrin, “The interference structure of the Wigner distribution and related time-frequency signal representations,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
    • (1995) The Wigner Distribution—Theory and Applications in Signal Processing
    • Hlawatsch, F.1    Flandrin, P.2
  • 6
    • 84938013953 scopus 로고
    • When is the Wigner-Ville spectrum non-negative?
    • I. T. Young et al., Eds. Amsterdam, The Netherlands: North Holland
    • P. Flandrin, “When is the Wigner-Ville spectrum non-negative?” in Signal Processing III: Theories and Applications, I. T. Young et al., Eds. Amsterdam, The Netherlands: North Holland, 1986, pp. 239–242.
    • (1986) Signal Processing III: Theories and Applications , pp. 239-242
    • Flandrin, P.1
  • 7
    • 0004065599 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • L. E. Franks, Signal Theory. Englewood Cliffs, NJ: Prentice-Hall, 1969.
    • (1969) Signal Theory
    • Franks, L.E.1
  • 8
    • 0028709941 scopus 로고
    • Time-frequency projection filters and time-frequency signal expansions
    • Dec.
    • F. Hlawatsch and W. Kozek, “Time-frequency projection filters and time-frequency signal expansions,” IEEE Trans. Signal Process., vol. 42, no. 12, Dec. 1994.
    • (1994) IEEE Trans. Signal Process , vol.42 , Issue.12
    • Hlawatsch, F.1    Kozek, W.2
  • 9
    • 0022733740 scopus 로고
    • Time-varying filtering and signal estimation using Wigner distribution synthesis techniques
    • June
    • G. F. Boudreaux-Bartels and T. W. Parks, “Time-varying filtering and signal estimation using Wigner distribution synthesis techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, pp. 442–451, June 1986.
    • (1986) IEEE Trans. Acoust., Speech, Signal Process , vol.ASSP-34 , pp. 442-451
    • Boudreaux-Bartels, G.F.1    Parks, T.W.2
  • 11
    • 33746835528 scopus 로고
    • Signal synthesis algorithms for bilinear time-frequency signal representations
    • W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
    • F. Hlawatsch and W. Krattenthaler, “Signal synthesis algorithms for bilinear time-frequency signal representations,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
    • (1995) The Wigner Distribution—Theory and Applications in Signal Processing
    • Hlawatsch, F.1    Krattenthaler, W.2
  • 12
    • 0005739972 scopus 로고
    • Time-varying signal processing using Wigner distribution synthesis techniques
    • W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier
    • G. F. Boudreaux-Bartels, “Time-varying signal processing using Wigner distribution synthesis techniques,” to appear in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, Ed. Amsterdam, The Netherlands: Elsevier, 1995.
    • (1995) The Wigner Distribution—Theory and Applications in Signal Processing
    • Boudreaux-Bartels, G.F.1
  • 15
    • 0026938327 scopus 로고
    • Time—frequency signal processing based on the Wigner—Weyl framework
    • Oct.
    • W. Kozek, “Time—frequency signal processing based on the Wigner—Weyl framework,” Signal Process., vol. 29, no. 1, pp. 77–92, Oct. 1992.
    • (1992) Signal Process , vol.29 , Issue.1 , pp. 77-92
    • Kozek, W.1
  • 16
    • 0028378193 scopus 로고
    • The Weyl correspondence and time-frequency analysis
    • Feb.
    • R. G. Shenoy and T. W. Parks, “The Weyl correspondence and time-frequency analysis,” IEEE Trans. Signal Process., vol. 42, no. 2, pp. 318–332, Feb. 1994.
    • (1994) IEEE Trans. Signal Process , vol.42 , Issue.2 , pp. 318-332
    • Shenoy, R.G.1    Parks, T.W.2
  • 17
    • 0024777625 scopus 로고
    • Wigner weight functions and Weyl symbols of non-negative definite linear operators
    • A. J. E. M. Janssen, “Wigner weight functions and Weyl symbols of non-negative definite linear operators,” Philips J. Res., vol. 44, pp. 7–12, 1989.
    • (1989) Philips J. Res. , vol.44 , pp. 7-12
    • Janssen, A.J.E.M.1
  • 19
    • 0026727385 scopus 로고
    • Regularity and unitarity of bilinear time-frequency signal representations
    • Jan.
    • F. Hlawatsch, “Regularity and unitarity of bilinear time-frequency signal representations,” IEEE Trans. Inform. Theory, vol. 38, no. 1, pp. 82–94, Jan. 1992.
    • (1992) IEEE Trans. Inform. Theory , vol.38 , Issue.1 , pp. 82-94
    • Hlawatsch, F.1
  • 23
    • 0019067203 scopus 로고
    • The Wigner distribution—A tool for time-frequency signal analysis, Part II
    • T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The Wigner distribution—A tool for time-frequency signal analysis, Part II,” Philips J. Res., vol. 35, pp. 276–300, 1980.
    • (1980) Philips J. Res. , vol.35 , pp. 276-300
    • Claasen, T.A.C.M.1    Mecklenbräuker, W.F.G.2
  • 24
    • 0027210168 scopus 로고
    • Regularity and unitarity of affine and hyperbolic time-frequency representations
    • Minneapolis, MN, Apr.
    • F. Hlawatsch, A. Papandreou, and G. F. Boudreaux-Bartles, “Regularity and unitarity of affine and hyperbolic time-frequency representations,” in Proc. IEEE ICASSP-93 (Minneapolis, MN, Apr. 1993), vol. 3, pp. 245–248.
    • (1993) Proc. IEEE ICASSP-93 , vol.3 , pp. 245-248
    • Hlawatsch, F.1    Papandreou, A.2    Boudreaux-Bartles, G.F.3
  • 25
    • 0027798109 scopus 로고
    • The hyperbolic class of quadratic time-frequency representations, Part I
    • Dec.
    • A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, “The hyperbolic class of quadratic time-frequency representations, Part I,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3425–3444, Dec. 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.12 , pp. 3425-3444
    • Papandreou, A.1    Hlawatsch, F.2    Boudreaux-Bartels, G.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.