-
1
-
-
0022435636
-
Adaptive equalization
-
Sept.
-
S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE, vol. 73, pp. 1349–1387, Sept. 1985.
-
(1985)
Proc. IEEE
, vol.73
, pp. 1349-1387
-
-
Qureshi, S.U.H.1
-
2
-
-
0025448744
-
Adaptive equalization of finite non-linear channels using multilayer perceptrons
-
S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptive equalization of finite non-linear channels using multilayer perceptrons,” Signal Processing, vol. 20, pp. 107–109, 1990.
-
(1990)
Signal Processing
, vol.20
, pp. 107-109
-
-
Chen, S.1
Gibson, G.J.2
Cowan, C.F.N.3
Grant, P.M.4
-
3
-
-
0025894357
-
Reconstruction of binary signals using an adaptive radial-basis-function equalizer
-
S. Chen, G. J. Gibson, C. F. N. Cowan, and P. Grant, “Reconstruction of binary signals using an adaptive radial-basis-function equalizer,” Signal Processing, vol. 22, no. 1, pp. 77–93, 1991.
-
(1991)
Signal Processing
, vol.22
, Issue.1
, pp. 77-93
-
-
Chen, S.1
Gibson, G.J.2
Cowan, C.F.N.3
Grant, P.4
-
4
-
-
84992664053
-
Complex neuron model with its applications to MQAM data communications in the presence of co-channel interferences
-
Mar.
-
Z. Xiang and G. Bi, “Complex neuron model with its applications to MQAM data communications in the presence of co-channel interferences,” in Proc. ICASSP 92, vol. II, Mar. 1992, pp. II-305–308.
-
(1992)
Proc. ICASSP 92
, vol.2
, pp. II-305-II-308
-
-
Xiang, Z.1
Bi, G.2
-
5
-
-
0343731944
-
A comparison between real and complex-valued neural networks in communication applications
-
June
-
N. Benvenuto, M. Marchsi, F. Piazza, and A. Uncini, “A comparison between real and complex-valued neural networks in communication applications,” in Proc. Int. Conf. Artificial Neural Networks (Espoo, Finland), June 1991, pp. 1177–1180.
-
(1991)
Proc. Int. Conf. Artificial Neural Networks (Espoo, Finland)
, pp. 1177-1180
-
-
Benvenuto, N.1
Marchsi, M.2
Piazza, F.3
Uncini, A.4
-
6
-
-
0026219227
-
The complex backpropagation algorithm
-
Sept.
-
H. Leung and S. Haykin, “The complex backpropagation algorithm,” IEEE Trans. Signal Processing, vol. 39, no. 9, pp. 2101–2104, Sept. 1991.
-
(1991)
IEEE Trans. Signal Processing
, vol.39
, Issue.9
, pp. 2101-2104
-
-
Leung, H.1
Haykin, S.2
-
7
-
-
0026845135
-
On the complex backpropagation algorithm
-
Apr.
-
N. Benvenuto and F. Piazza, “On the complex backpropagation algorithm,” IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 967–969, Apr. 1992.
-
(1992)
IEEE Trans. Signal Processing
, vol.40
, Issue.4
, pp. 967-969
-
-
Benvenuto, N.1
Piazza, F.2
-
8
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
C. A. Micchelli, “Interpolation of scattered data: Distance matrices and conditionally positive definite functions,” Constructive Approximation, vol. 2, pp. 11–22, 1986.
-
(1986)
Constructive Approximation
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
9
-
-
0000621802
-
Multivariate functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe, “Multivariate functional interpolation and adaptive networks,” Complex Syst., vol. 2, pp. 321–355, 1988.
-
(1988)
Complex Syst.
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
10
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
F. Girosi. T. Poggio, “Networks for approximation and learning,” Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sept. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Girosi, F.1
Poggio, T.2
-
11
-
-
0028277017
-
Complex-valued radial basis function networks, Part I: Network architecture and learning algorithms
-
Jan.
-
S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis function networks, Part I: Network architecture and learning algorithms,” Signal Processing, vol. 35, pp. 19–31, Jan. 1994.
-
(1994)
Signal Processing
, vol.35
, pp. 19-31
-
-
Chen, S.1
McLaughlin, S.2
Mulgrew, B.3
-
12
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Mar.
-
S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2, no. 2, pp. 302–308, Mar. 1991.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, Issue.2
, pp. 302-308
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
13
-
-
84933405848
-
Blind equalization using radial basis function networks
-
Sept.
-
I. Cha and S. A. Kassam, “Blind equalization using radial basis function networks,” Proc. Canadian Conf. Elect. Eng. Comput. Sci., vol. 1, Sept. 1992, pp. TM.3.13.1-4.
-
(1992)
Proc. Canadian Conf. Elect. Eng. Comput. Sci.
, vol.1
, pp. TM.3.13.1-TM.3.13.14
-
-
Cha, I.1
Kassam, S.A.2
-
14
-
-
0027807482
-
-
presented at The 27th Annu. Asilomar Conf. Signals, Syst., Comput., Nov.
-
S. A. Kassam and I. Cha, “Radial basis function networks in nonlinear signal processing,” presented at The 27th Annu. Asilomar Conf. Signals, Syst., Comput., Nov. 1993.
-
(1993)
Radial basis function networks in nonlinear signal processing
-
-
Kassam, S.A.1
Cha, I.2
-
15
-
-
0028392986
-
Complex-valued radial basis function networks, Part II: Application to digital communications channel equalisation
-
Feb.
-
S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis function networks, Part II: Application to digital communications channel equalisation,” Signal Processing, vol. 36, pp. 175–188, Feb. 1994.
-
(1994)
Signal Processing
, vol.36
, pp. 175-188
-
-
Chen, S.1
McLaughlin, S.2
Mulgrew, B.3
-
16
-
-
0000106040
-
Universal approximation using radial-basis function networks
-
J. Park and I. W. Sandberg, “Universal approximation using radial-basis function networks,” Neural Computations, vol. 3, pp. 246–257, 1991.
-
(1991)
Neural Computations
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
17
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
J. E. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Networks, vol. 1, no. 2, pp. 281–294, 1989.
-
(1989)
Neural Networks
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.E.1
Darken, C.2
-
18
-
-
84947626826
-
Recursive hybrid algorithm for non-linear system identification using radial basis function networks
-
S. Chen, S. A. Billings, and P. M. Grant, “Recursive hybrid algorithm for non-linear system identification using radial basis function networks,” Int. J. Cont., vol. 55, no. 5, pp. 1051–1070, 1992.
-
(1992)
Int. J. Cont.
, vol.55
, Issue.5
, pp. 1051-1070
-
-
Chen, S.1
Billings, S.A.2
Grant, P.M.3
-
20
-
-
33747746017
-
Minimal topology for a radial basis function neural network for pattern classification
-
New York: Academic, Apr.
-
A. G. Bors and M. Gabbouji, “Minimal topology for a radial basis function neural network for pattern classification,” in Digital Signal Processing. New York: Academic, Apr. 1994.
-
(1994)
Digital Signal Processing.
-
-
Bors, A.G.1
Gabbouji, M.2
-
21
-
-
0025550399
-
Function approximation and time series prediction with neural networks
-
June
-
R. D. Jones et al., “Function approximation and time series prediction with neural networks,” in Proc. Int. Joint Conf. Neural Networks, June 1990, pp. 1649–666.
-
(1990)
Proc. Int. Joint Conf. Neural Networks
, pp. 1649-1666
-
-
Jones, R.D.1
|