메뉴 건너뛰기




Volumn 13, Issue 1, 1995, Pages 122-131

Channel Equalization Using Adaptive Complex Radial Basis Function Networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMMUNICATION CHANNELS (INFORMATION THEORY); COMPUTER SIMULATION; DIGITAL COMMUNICATION SYSTEMS; DIGITAL FILTERS; EQUALIZERS; MAPPING; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY; SPURIOUS SIGNAL NOISE;

EID: 0029205963     PISSN: 07338716     EISSN: None     Source Type: Journal    
DOI: 10.1109/49.363139     Document Type: Article
Times cited : (185)

References (21)
  • 1
    • 0022435636 scopus 로고
    • Adaptive equalization
    • Sept.
    • S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE, vol. 73, pp. 1349–1387, Sept. 1985.
    • (1985) Proc. IEEE , vol.73 , pp. 1349-1387
    • Qureshi, S.U.H.1
  • 2
    • 0025448744 scopus 로고
    • Adaptive equalization of finite non-linear channels using multilayer perceptrons
    • S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptive equalization of finite non-linear channels using multilayer perceptrons,” Signal Processing, vol. 20, pp. 107–109, 1990.
    • (1990) Signal Processing , vol.20 , pp. 107-109
    • Chen, S.1    Gibson, G.J.2    Cowan, C.F.N.3    Grant, P.M.4
  • 3
    • 0025894357 scopus 로고
    • Reconstruction of binary signals using an adaptive radial-basis-function equalizer
    • S. Chen, G. J. Gibson, C. F. N. Cowan, and P. Grant, “Reconstruction of binary signals using an adaptive radial-basis-function equalizer,” Signal Processing, vol. 22, no. 1, pp. 77–93, 1991.
    • (1991) Signal Processing , vol.22 , Issue.1 , pp. 77-93
    • Chen, S.1    Gibson, G.J.2    Cowan, C.F.N.3    Grant, P.4
  • 4
    • 84992664053 scopus 로고
    • Complex neuron model with its applications to MQAM data communications in the presence of co-channel interferences
    • Mar.
    • Z. Xiang and G. Bi, “Complex neuron model with its applications to MQAM data communications in the presence of co-channel interferences,” in Proc. ICASSP 92, vol. II, Mar. 1992, pp. II-305–308.
    • (1992) Proc. ICASSP 92 , vol.2 , pp. II-305-II-308
    • Xiang, Z.1    Bi, G.2
  • 6
    • 0026219227 scopus 로고
    • The complex backpropagation algorithm
    • Sept.
    • H. Leung and S. Haykin, “The complex backpropagation algorithm,” IEEE Trans. Signal Processing, vol. 39, no. 9, pp. 2101–2104, Sept. 1991.
    • (1991) IEEE Trans. Signal Processing , vol.39 , Issue.9 , pp. 2101-2104
    • Leung, H.1    Haykin, S.2
  • 7
    • 0026845135 scopus 로고
    • On the complex backpropagation algorithm
    • Apr.
    • N. Benvenuto and F. Piazza, “On the complex backpropagation algorithm,” IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 967–969, Apr. 1992.
    • (1992) IEEE Trans. Signal Processing , vol.40 , Issue.4 , pp. 967-969
    • Benvenuto, N.1    Piazza, F.2
  • 8
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C. A. Micchelli, “Interpolation of scattered data: Distance matrices and conditionally positive definite functions,” Constructive Approximation, vol. 2, pp. 11–22, 1986.
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 9
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, “Multivariate functional interpolation and adaptive networks,” Complex Syst., vol. 2, pp. 321–355, 1988.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 10
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sept.
    • F. Girosi. T. Poggio, “Networks for approximation and learning,” Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Girosi, F.1    Poggio, T.2
  • 11
    • 0028277017 scopus 로고
    • Complex-valued radial basis function networks, Part I: Network architecture and learning algorithms
    • Jan.
    • S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis function networks, Part I: Network architecture and learning algorithms,” Signal Processing, vol. 35, pp. 19–31, Jan. 1994.
    • (1994) Signal Processing , vol.35 , pp. 19-31
    • Chen, S.1    McLaughlin, S.2    Mulgrew, B.3
  • 12
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar.
    • S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2, no. 2, pp. 302–308, Mar. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-308
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 13
    • 84933405848 scopus 로고
    • Blind equalization using radial basis function networks
    • Sept.
    • I. Cha and S. A. Kassam, “Blind equalization using radial basis function networks,” Proc. Canadian Conf. Elect. Eng. Comput. Sci., vol. 1, Sept. 1992, pp. TM.3.13.1-4.
    • (1992) Proc. Canadian Conf. Elect. Eng. Comput. Sci. , vol.1 , pp. TM.3.13.1-TM.3.13.14
    • Cha, I.1    Kassam, S.A.2
  • 15
    • 0028392986 scopus 로고
    • Complex-valued radial basis function networks, Part II: Application to digital communications channel equalisation
    • Feb.
    • S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis function networks, Part II: Application to digital communications channel equalisation,” Signal Processing, vol. 36, pp. 175–188, Feb. 1994.
    • (1994) Signal Processing , vol.36 , pp. 175-188
    • Chen, S.1    McLaughlin, S.2    Mulgrew, B.3
  • 16
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park and I. W. Sandberg, “Universal approximation using radial-basis function networks,” Neural Computations, vol. 3, pp. 246–257, 1991.
    • (1991) Neural Computations , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 17
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. E. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Networks, vol. 1, no. 2, pp. 281–294, 1989.
    • (1989) Neural Networks , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.2
  • 18
    • 84947626826 scopus 로고
    • Recursive hybrid algorithm for non-linear system identification using radial basis function networks
    • S. Chen, S. A. Billings, and P. M. Grant, “Recursive hybrid algorithm for non-linear system identification using radial basis function networks,” Int. J. Cont., vol. 55, no. 5, pp. 1051–1070, 1992.
    • (1992) Int. J. Cont. , vol.55 , Issue.5 , pp. 1051-1070
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 20
    • 33747746017 scopus 로고
    • Minimal topology for a radial basis function neural network for pattern classification
    • New York: Academic, Apr.
    • A. G. Bors and M. Gabbouji, “Minimal topology for a radial basis function neural network for pattern classification,” in Digital Signal Processing. New York: Academic, Apr. 1994.
    • (1994) Digital Signal Processing.
    • Bors, A.G.1    Gabbouji, M.2
  • 21
    • 0025550399 scopus 로고
    • Function approximation and time series prediction with neural networks
    • June
    • R. D. Jones et al., “Function approximation and time series prediction with neural networks,” in Proc. Int. Joint Conf. Neural Networks, June 1990, pp. 1649–666.
    • (1990) Proc. Int. Joint Conf. Neural Networks , pp. 1649-1666
    • Jones, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.