메뉴 건너뛰기




Volumn 6, Issue 1, 1995, Pages 157-169

Optimal Adaptive K-Means Algorithm with Dynamic Adjustment of Learning Rate

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTER ARCHITECTURE; DESCRIBING FUNCTIONS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION; REAL TIME SYSTEMS; STATISTICS; VECTOR QUANTIZATION;

EID: 0029196051     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.363440     Document Type: Article
Times cited : (177)

References (28)
  • 1
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in striate cortex
    • C. V. der Malsburg, “Self-organization of orientation sensitive cells in striate cortex,” Kybernetik, vol. 14, pp. 85-100, 1973.
    • (1973) Kybernetik , vol.14 , pp. 85-100
    • der Malsburg, C.V.1
  • 2
    • 0016758101 scopus 로고
    • Cogniton: A self-organizing multilayered neural network
    • K. Fukushima, “Cogniton: A self-organizing multilayered neural network,” Biol. vol. 20, 121-136, 1975.
    • (1975) Biol. , vol.20
    • Fukushima, K.1
  • 3
    • 0020074887 scopus 로고
    • Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
    • E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex,” J. Neurosci., vol. 2, 32-48, 1982.
    • (1982) J. Neurosci. , vol.2
    • Bienenstock, E.L.1    Cooper, L.N.2    Munro, P.W.3
  • 4
    • 0020274030 scopus 로고
    • Clustering, taxonomy, and topological maps of patterns
    • T. Kohonen, “Clustering, taxonomy, and topological maps of patterns,” in Proc. Sixth Int. Conf. Pattern Recognition, M. Lang, Ed. Silver Spring, MD: IEEE Computer Society Press, 1982.
    • (1982) Proc. Sixth Int. Conf. Pattern Recognition
    • Kohonen, T.1
  • 6
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recording 1: Parallel development and coding of neural feature detectors
    • S. Grossberg, “Adaptive pattern classification and universal recording 1: Parallel development and coding of neural feature detectors,” Biol. Cybern., vol. 23, pp. 121-134, 1976.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 7
    • 0000672424 scopus 로고
    • Fast learning in network of locally tuned processing units
    • J. Moody and C. J. Darken, “Fast learning in network of locally tuned processing units,” Neural Computation, vol. 1, pp. 281-294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 9
    • 0020102027 scopus 로고
    • Least squares quantization in pcm
    • S. P. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2, pp. 129-137, 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.IT-28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 10
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. Math. Stat. Prob., vol. 281, 1967.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. Prob. , vol.281
    • MacQueen, J.1
  • 12
    • 0021412027 scopus 로고
    • Vector quantization
    • Apr.
    • R. M. Gray, “Vector quantization,” IEEE ASSP Mag., pp. 4-29, Apr. 1984.
    • (1984) IEEE ASSP Mag. , pp. 4-29
    • Gray, R.M.1
  • 18
    • 2342523675 scopus 로고
    • Increased rate of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rate of convergence through learning rate adaptation,” Neural Networks, vol. 1, pp. 331-342, 1989.
    • (1989) Neural Networks , vol.1 , pp. 331-342
    • Jacobs, R.A.1
  • 21
    • 0010845919 scopus 로고
    • Neural dynamics of category learning and recognition: Attention, memory consolidation, and amnesia
    • G. A. Carpenter and S. Grossberg, “Neural dynamics of category learning and recognition: Attention, memory consolidation, and amnesia,” in Brain Structure, Learning and Memory, R. Newburgh and E. Wegman, Eds. 1986.
    • (1986) Brain Structure
    • Carpenter, G.A.1    Grossberg, S.2
  • 23
    • 84941863560 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • Mar.
    • C. Clunrungrueng and C. H. Séquin, “Optimal adaptive k-means algorithm with dynamic adjustment of learning rate,” Int. Comput. Sci. Inst. (ICSI), Berkeley, CA, Tech. Rep. TR-91-017, Mar. 1991.
    • (1991) Int. Comput. Sci. Inst. (ICSI)
    • Clunrungrueng, C.1    Séquin, C.H.2
  • 24
    • 0026371803 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • July
    • “Optimal adaptive k-means algorithm with dynamic adjustment of learning rate,” in Proc. Int. Joint Conf Neural Networks (IJCNN-9I-Seattle), July 1991.
    • (1991) Proc. Int. Joint Conf Neural Networks (IJCNN-9I-Seattle)
  • 26
    • 0018491303 scopus 로고
    • Asymptotically optimal block quantization
    • A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. Inform. Theory, vol. IT-25, no. 4, pp. 373-380, 1979.
    • (1979) IEEE Trans. Inform. Theory , vol.IT-25 , Issue.4 , pp. 373-380
    • Gersho, A.1
  • 27
    • 0021124465 scopus 로고
    • Color image compression by adaptive vector quantization
    • Mar.
    • P. Boucher and M. Goldberg, “Color image compression by adaptive vector quantization,” in Proc. IEEE ICASSP, Mar. 1984, pp. 29.6.1-29.9.4.
    • (1984) Proc. IEEE ICASSP
    • Boucher, P.1    Goldberg, M.2
  • 28
    • 0018918171 scopus 로고
    • A algorithm for vector quantizer design
    • Jan.
    • Y. Linde, A. Buzo, and R. M. Gray, “A algorithm for vector quantizer design.” IEEE Trans. Commun., vol. COM-28, no. 4, pp. 84-95, Jan. 1980.
    • (1980) IEEE Trans. Commun. , vol.COM-28 , Issue.4 , pp. 84-95
    • Linde, Y.1    Buzo, A.2    Gray, R.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.