메뉴 건너뛰기




Volumn 6, Issue 1, 1995, Pages 131-143

Robust Principal Component Analysis by Self-Organizing Rules Based on Statistical Physics Approach

Author keywords

[No Author keywords available]

Indexed keywords

BINARY SEQUENCES; DECISION THEORY; DESCRIBING FUNCTIONS; GIBBS FREE ENERGY; NEURAL NETWORKS; ROBUSTNESS (CONTROL SYSTEMS); STATISTICAL METHODS; VECTORS;

EID: 0029184173     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.363442     Document Type: Article
Times cited : (182)

References (43)
  • 1
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 52-58, 1989.
    • (1989) Neural Networks , vol.2 , pp. 52-58
    • Baldi, P.1    Hornik, K.2
  • 2
    • 84941872153 scopus 로고
    • Back-propagation and unsupervised learning in linear networks
    • “Back-propagation and unsupervised learning in linear networks,” in Y. Chauvin and D. E. Rumelhart, Eds., Back-Propagation: Theory, Architecture, and Applications. Hillsdale, NJ: Erlbaum Associates, 1991.
    • (1991) Y. Chauvin and D. E. Rumelhart
  • 4
    • 0000377432 scopus 로고
    • Optimal sampling of natural images: A design principle for the visual system
    • W. Bialek, D. L. Ruderman, and A. Zee, “Optimal sampling of natural images: A design principle for the visual system,” in Advances in Neural Information Processing System 3, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 363-369.
    • (1991) Advances in Neural Information Processing System 3 , pp. 363-369
    • Bialek, W.1    Ruderman, D.L.2    Zee, A.3
  • 5
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition,” Biol. Cybern., vol. 59, pp. 291-294, 1988.
    • (1988) Biol. Cybern. , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 7
    • 0024903263 scopus 로고
    • Principal component analysis by gradient descent on a constrained linear Hebbian cell
    • Y. Chauvin, “Principal component analysis by gradient descent on a constrained linear Hebbian cell,” in Proc. IEEE Int. Conf. Neural Networks, Vol. 1 (Washington, DC). New York: IEEE Press, 1989, pp. 373-380.
    • (1989) Proc. IEEE Int. Conf. Neural Networks , vol.1 , pp. 373-380
    • Chauvin, Y.1
  • 8
    • 0010312087 scopus 로고
    • Image compression by back-propagation: A demonstration of extentional programming
    • G. W. Cottrell, P. W. Munro, and D. Zipser, “Image compression by back-propagation: A demonstration of extentional programming,” Tech. Rep. 8702, Inst. Sci., UCSD, 1987.
    • (1987) Tech. Rep. 8702
    • Cottrell, G.W.1    Munro, P.W.2    Zipser, D.3
  • 9
    • 0001527254 scopus 로고
    • Influence in principal components analysis
    • F. Critchley, “Influence in principal components analysis,” Biometrika, vol. 72, pp. 627-636, 1985.
    • (1985) Biometrika , vol.72 , pp. 627-636
    • Critchley, F.1
  • 10
    • 84950884569 scopus 로고
    • Robust estimation of dispersion matrices and principal components
    • S. J. Devlin, R. Gnanadesikan, and J. R. Ketternrig, “Robust estimation of dispersion matrices and principal components,” J. Amer. Statist. Ass., vol. 76, pp. 354-362, 1981.
    • (1981) J. Amer. Statist. Ass. , vol.76 , pp. 354-362
    • Devlin, S.J.1    Gnanadesikan, R.2    Ketternrig, J.R.3
  • 11
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • P. Foldiak, “Adaptive network for optimal linear feature extraction,” in Proc. IEEE Int. Conf. Neural Networks, Vol. I (Washington, DC). New York: IEEE Press, 1989, 401-405.
    • (1989) Proc. IEEE Int. Conf. Neural Networks , vol.1
    • Foldiak, P.1
  • 12
    • 0026201666 scopus 로고
    • A common framework for image segmen-
    • D. Geiger and A. L. Yuille, “A common framework for image segmen- Int. J. Vision, vol. 6, 227-233, 1991.
    • (1991) Int. J. Vision , vol.6
    • Geiger, D.1    Yuille, A.L.2
  • 13
    • 0026727495 scopus 로고
    • Convergence analysis of local feature extraction Neural Networks
    • K. Hornik and C. M. Kuan, “Convergence analysis of local feature extraction Neural Networks, vol. 5, 229-260, 1992.
    • (1992) , vol.5
    • Hornik, K.1    Kuan, C.M.2
  • 16
    • 34250096695 scopus 로고
    • Spontaneous symmetry-breaking energy functions and the emergence of orientation selective cortical cells
    • D. M. Kammen and A. L. Yuille, “Spontaneous symmetry-breaking energy functions and the emergence of orientation selective cortical cells,” Biol. Cybern., vol. 59, 23-31, 1988.
    • (1988) Biol. Cybern. , vol.59
    • Kammen, D.M.1    Yuille, A.L.2
  • 17
    • 84911670737 scopus 로고
    • Adaptive principal component analysis via a new neural learning network
    • S. Y. Kung, “Adaptive principal component analysis via a new neural learning network,” in Proc. 1990 IEEE Int. Symp. Circuits Syst. (New Orleans, LA). New York: IEEE Press, 1990, pp. 138-140.
    • (1990) Proc. 1990 IEEE Int. Symp. Circuits Syst. (New Orleans , pp. 138-140
    • Kung, S.Y.1
  • 18
    • 0003346575 scopus 로고
    • From basic network principles to neural architecture
    • E. Linsker, “From basic network principles to neural architecture,” Proc. Nat. Acad. Sci. USA, vol. 83, pp. 7508-7512, 8390-8394, 1986.
    • (1986) Proc. Nat. Acad. Sci. USA , vol.83 , pp. 7508-7512
    • Linsker, E.1
  • 19
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Mar.
    • “Self-organization in a perceptual network,” IEEE Computer, pp. 105-117, Mar. 1988.
    • (1988) IEEE Computer , pp. 105-117
  • 20
    • 0005368420 scopus 로고
    • Design a sensory processing system: What can be learned from principal components analysis?
    • “Design a sensory processing system: What can be learned from principal components analysis?,” in Proc. Int. Joint Conf Neural Networks, Vol. II, (Washington, DC). 1990, pp. 291-297.
    • (1990) Proc. Int. Joint Conf Neural Networks , vol.2 , pp. 291-297
  • 21
    • 0000962148 scopus 로고
    • Analysis of Linsker's simulation of Hebbian rules
    • D. J. C. Mackey and K. D. Miller, “Analysis of Linsker's simulation of Hebbian rules,” Neural Computation, vol. 2, 173-187, 1990.
    • (1990) Neural Computation , vol.2
    • Mackey, D.J.C.1    Miller, K.D.2
  • 22
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math. Biol., vol. 16, pp. 267-273, 1982.
    • (1982) J. Math. Biol. , vol.16 , pp. 267-273
    • Oja, E.1
  • 23
  • 24
    • 0022013023 scopus 로고
    • On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen, “On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal. Appl., vol. 106, pp. 69-84, 1985.
    • (1985) J. Math. Anal. Appl. , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 25
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • E. Oja, “Neural networks, principal components, and subspaces,” Int. J. Neural Syst., vol. 1, pp. 61-68, 1989.
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 26
    • 0003168213 scopus 로고
    • Learning in nonlinear constrained Hebbian networks
    • E. Oja, H. Ogawa, and J. Wangviwattana, “Learning in nonlinear constrained Hebbian networks,” in Proc. ICANN-91, Helsinki, Finland, 1991, 385-390.
    • (1991) Proc. ICANN-91
    • Oja, E.1    Ogawa, H.2    Wangviwattana, J.3
  • 27
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • E. Oja, “Principal components, minor components, and linear neural networks,” Neural Networks, vol. 5, pp. 927-935, 1992.
    • (1992) Neural Networks , vol.5 , pp. 927-935
    • Oja, E.1
  • 28
    • 84956074083 scopus 로고
    • A self-organizing network for principal- Lett
    • J. Rubner and P. Tavan, “A self-organizing network for principal- Lett., vol. 10, 693-689, 1989.
    • (1989) , vol.10
    • Rubner, J.1    Tavan, P.2
  • 32
    • 0025164912 scopus 로고
    • Development of feature detectors by self- Biol
    • J. Rubner and K. Schulten, “Development of feature detectors by self- Biol. vol. 62, 193-199, 1990.
    • (1990) , vol.62
    • Rubner, J.1    Schulten, K.2
  • 33
    • 0000714244 scopus 로고
    • A robust principal component analysis
    • F. H. Ruymagaart, “A robust principal component analysis,” J. Multivariate Anal., vol. 1981.
    • (1981) J. Multivariate Anal. , vol.1981
    • Ruymagaart, F.H.1
  • 34
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feed forward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feed forward neural network,” Neural Networks, vol. 2, pp. 459-473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 35
    • 84941862514 scopus 로고
    • Feature discovery through error-correcting learning
    • R. Williams, “Feature discovery through error-correcting learning,” Tech. 8501, Inst. Sci., UCSD, 1985.
    • (1985) Tech. 8501
    • Williams, R.1
  • 36
    • 0026297707 scopus 로고
    • Least MSE reconstruction for self-organization: (II) Further theoretical and experimental studies on one layer nets
    • Nov.
    • L. Xu, “Least MSE reconstruction for self-organization: (II) Further theoretical and experimental studies on one layer nets,” in Proc. Int. Joint Neural Networks, Nov. 1991, 2368-2373.
    • (1991) Proc. Int. Joint Neural Networks
    • Xu, L.1
  • 37
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • L. Xu, E. Oja, and C. Y. Suen, “Modified Hebbian learning for curve and surface fitting,” Neural Networks, vol. 5, pp. 441-457, 1992.
    • (1992) Neural Networks , vol.5 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 38
    • 0000280443 scopus 로고
    • Neural nets for dual subspace pattern recognition
    • L. Xu, A. Krzyzak, and E. Oja, “Neural nets for dual subspace pattern recognition,” Int. J. Neural Syst., vol. 2, pp. 169-187, 1991.
    • (1991) Int. J. Neural Syst. , vol.2 , pp. 169-187
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 39
    • 0027206958 scopus 로고
    • Least mean square error reconstruction for self-organizing neural nets
    • L. Xu, “Least mean square error reconstruction for self-organizing neural nets,” Neural Networks, vol. 6, pp. 627-648, 1993.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 40
    • 0024369937 scopus 로고
    • Quadrature and the development of orientation selective cortical cells by Hebb rules
    • A. L. Yuille, D. M. Kammen, and D. S. Cohen, “Quadrature and the development of orientation selective cortical cells by Hebb rules,” Biol. vol. 60, 183-194, 1989.
    • (1989) Biol. , vol.60
    • Yuille, A.L.1    Kammen, D.M.2    Cohen, D.S.3
  • 41
    • 0010533260 scopus 로고
    • Stereo integration, mean field and
    • A. L. Yuille, D. Geiger, and H. H. Bulthoff, “Stereo integration, mean field and vol. 2, 423-442, 1991.
    • (1991) , vol.2
    • Yuille, A.L.1    Geiger, D.2    Bulthoff, H.H.3
  • 42
    • 84941856947 scopus 로고
    • Generalized deformable models, statistical physics, and Neural
    • A. L. Yuille, “Generalized deformable models, statistical physics, and Neural vol. 2, 1-24, 1990.
    • (1990) , vol.2
    • Yuille, A.L.1
  • 43
    • 0343890765 scopus 로고
    • Robust statistics, transparency and correspondence
    • A. L. Yuille, T. Yang, and D. Geiger, “Robust statistics, transparency and correspondence,” Harvard Robotics Lab., Tech. Rep. 90-7, 1990.
    • (1990) Harvard Robotics Lab.
    • Yuille, A.L.1    Yang, T.2    Geiger, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.