메뉴 건너뛰기




Volumn 41, Issue 11, 1994, Pages 718-729

A Constrained Anti-Hebbian Learning Algorithm for Total Least-Squares Estimation with Applications to Adaptive FIR and IIR Filtering

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE FILTERING; COMPUTER SIMULATION; CONSTRAINT THEORY; CONVERGENCE OF NUMERICAL METHODS; DIGITAL FILTERS; LEAST SQUARES APPROXIMATIONS; MATRIX ALGEBRA; OPTIMIZATION; PARAMETER ESTIMATION; VECTORS;

EID: 0028547542     PISSN: 10577130     EISSN: None     Source Type: Journal    
DOI: 10.1109/82.331542     Document Type: Article
Times cited : (96)

References (37)
  • 3
    • 0000333571 scopus 로고
    • An analysis of the total least squares problem
    • G. H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,” SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, 1980.
    • (1980) SIAM J. Numer. Anal. , vol.17 , Issue.6 , pp. 883-893
    • Golub, G.H.1    Van Loan, C.F.2
  • 5
    • 0022281690 scopus 로고
    • The use of total linear least squares techniques for identification and parameter estimation
    • York, UK
    • S. V. Huffel and J. Vandewalle, “The use of total linear least squares techniques for identification and parameter estimation,” in IFAC Identification and Parameter Estimation. York, UK, 1985, pp. 1167–1172.
    • (1985) IFAC Identification and Parameter Estimation. , pp. 1167-1172
    • Huffel, S.V.1    Vandewalle, J.2
  • 6
    • 50249143180 scopus 로고
    • Total least square approach for frequency estimation using linear prediction
    • M. A. Rahman and K.-B. Yu, “Total least square approach for frequency estimation using linear prediction,” IEEE Trans. Acoust., Speech and Sig. Proc., vol. ASSP-35, no. 10, pp. 1440–1454, 1987.
    • (1987) IEEE Trans. Acoust., Speech and Sig. Proc. , vol.ASSP-35 , Issue.10 , pp. 1440-1454
    • Rahman, M.A.1    Yu, K.-B.2
  • 7
    • 0026284933 scopus 로고
    • Recursive total least squares algorithm for adaptive filtering
    • Toronto, Canada May
    • C. E. Davila, “Recursive total least squares algorithm for adaptive filtering,” in Proc. IEEE Int. Conf. on Acoust. Speech and Sig. Proc., Toronto, Canada, 1853–1856, May 1991.
    • (1991) Proc. IEEE Int. Conf. on Acoust. Speech and Sig. Proc. , pp. 1853-1856
    • Davila, C.E.1
  • 8
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: perceptron, madaline and backpropagation
    • Sept.
    • B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron, madaline and backpropagation,” Proc. IEEE, vol. 78, pp. 1415–1441, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1441
    • Widrow, B.1    Lehr, M.A.2
  • 9
    • 0025489075 scopus 로고
    • The self-organizing map
    • Sept.
    • T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, pp. 1464–1480, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 10
    • 0023981451 scopus 로고
    • The art of adaptive pattern recognition by a self-organizing neural network
    • G. A. Carpenter and S. Crossberg, “The art of adaptive pattern recognition by a self-organizing neural network,” IEEE Comput., vol. 21, no. 3, 77–88, 1988.
    • (1988) IEEE Comput. , vol.21 , Issue.3 , pp. 77-88
    • Carpenter, G.A.1    Crossberg, S.2
  • 11
    • 0021617162 scopus 로고
    • Phontopic maps—insightful representation of phonological features for speech recognition
    • Montreal
    • T. Kohonen, K. Makisara, and T. Saramaki, “Phontopic maps—insightful representation of phonological features for speech recognition,” in Proc. 7th Int. Conf. Pattern Recog., Montreal, pp. 182–185, 1984.
    • (1984) Proc. 7th Int. Conf. Pattern Recog. , pp. 182-185
    • Kohonen, T.1    Makisara, K.2    Saramaki, T.3
  • 12
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biolog. Cybem., vol. 36, no. 2, pp. 193–202, 1980.
    • (1980) Biolog. Cybem. , vol.36 , Issue.2 , pp. 193-202
    • Fukushima, K.1
  • 13
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math. Bio., vol. 15, pp. 267–273, 1982.
    • (1982) J. Math. Bio. , vol.15 , pp. 267-273
    • Oja, E.1
  • 14
    • 0004121838 scopus 로고
    • Subspace Methods of Pattern Recognition.
    • E. Oja, Subspace Methods of Pattern Recognition. Research Studies, 1983.
    • (1983)
    • Oja, E.1
  • 15
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal. and vol. 106, 69–84, 1985.
    • (1985) J. Math. Anal. and , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 16
    • 0024774330 scopus 로고
    • Neural network and principal component analysis: leaaming from examples without local minima
    • P. Baldi and K. Homik, “Neural network and principal component analysis: leaaming from examples without local minima,” Neural Networks, vol. 2, no. 1, pp. 52–58, 1989.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 52-58
    • Baldi, P.1    Homik, K.2
  • 17
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • Washington, DC
    • P. Foldiak, “Adaptive network for optimal linear feature extraction,” in Proc. Int. Joint Conf. Neural Networks, vol. 1, Washington, DC, pp. 401–405, June 1989.
    • (1989) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 401-405
    • Foldiak, P.1
  • 18
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 19
    • 84956074083 scopus 로고
    • A self-organizing network for principal-component analysis
    • J. Rubner and P. Tavan, “A self-organizing network for principal-component analysis,” Europhysics Lett., vol. 10, no. 7, pp. 693–698, 1989.
    • (1989) Europhysics Lett. , vol.10 , Issue.7 , pp. 693-698
    • Rubner, J.1    Tavan, P.2
  • 20
    • 0025623681 scopus 로고
    • A neural network learning algorithm for adaptive principal component extraction (APEX)
    • Albuquerque, NM Apr.
    • S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction (APEX),” in Proc. IEEE Int. Conf. on Acoust., Speech and Sig. Proc., Albuquerque, NM, pp. 861–864, Apr. 1990.
    • (1990) Proc. IEEE Int. Conf. on Acoust., Speech and Sig. Proc. , pp. 861-864
    • Kung, S.Y.1    Diamantaras, K.I.2
  • 21
    • 33847117982 scopus 로고
    • Back-propagation and unsupervised learning in linear networks
    • Earlbaum Associates, Y. Chauvin and D. E. Rumelhart, Eds.
    • P. Baldi and H. Homik, “Back-propagation and unsupervised learning in linear networks,” in Back Propagation: Theory, Architectures and Applications. Earlbaum Associates, Y. Chauvin and D. E. Rumelhart, Eds., 1991.
    • (1991) Back Propagation: Theory, Architectures and Applications.
    • Baldi, P.1    Homik, H.2
  • 22
    • 0025594749 scopus 로고
    • Constrained principal component analysis via an orthogonal learning network
    • New Orleans, LA, May
    • S. Y. Kung, “Constrained principal component analysis via an orthogonal learning network,” in Proc. IEEE int. Symp. on Circuits Syst., New Orleans, LA, May 1990, pp. 719–722.
    • (1990) Proc. IEEE int. Symp. on Circuits Syst. , pp. 719-722
    • Kung, S.Y.1
  • 23
    • 0003979924 scopus 로고
    • Introduction to Theory of Neural Computation.
    • Reading, MA: Addison-Wesley
    • J. Hertz, A. Krogh, and R. Palmer, Introduction to Theory of Neural Computation. Reading, MA: Addison-Wesley, 1991.
    • (1991)
    • Hertz, J.1    Krogh, A.2    Palmer, R.3
  • 24
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • L. Xu, E. Oja, and C. Y. Suen, “Modified Hebbian learning for curve and surface fitting,” Neural Networks, 1992.
    • (1992) Neural Networks
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 25
    • 0026631973 scopus 로고
    • Neural-net method for dual subspace pattern recognition
    • July
    • L. Xu, A. Krzyzak, and F. Oja, “Neural-net method for dual subspace pattern recognition,” in Proc. Int’l. Joint Conf. Neural Networks, vol. 2, Seattle, WA, pp. II379–II384, July 1991.
    • (1991) Proc. Int’l. Joint Conf. Neural Networks , vol.2 , pp. II379-II384
    • Xu, L.1    Krzyzak, A.2    Oja, F.3
  • 26
    • 0004113431 scopus 로고
    • Adaptive Signal Processing.
    • Englewood Cliffs, NJ: Prentice-Hall
    • B. Widrow, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.
    • (1985)
    • Widrow, B.1
  • 27
    • 0018920839 scopus 로고
    • An adaptive spectral analysis technique for unbiased frequency estimation in the presence of white noise
    • Pacific Grove, CA, Nov.
    • P. A. Thompson, “An adaptive spectral analysis technique for unbiased frequency estimation in the presence of white noise,” in Proc. 13th Asilomar Conf. Circuits, Syst., Comput., Pacific Grove, CA, Nov. 1979, pp. 529–533.
    • (1979) Proc. 13th Asilomar Conf. Circuits, Syst., Comput. , pp. 529-533
    • Thompson, P.A.1
  • 28
    • 0020796539 scopus 로고
    • Adaptive convergence of spectral estimation based on pisarenko harmonic retrieval
    • M. G. Larimore, “Adaptive convergence of spectral estimation based on pisarenko harmonic retrieval,” IEEE Trans. Acoust., Speech and Sig. Proc., vol. ASSP-31, no. 4, pp. 955–962, 1983.
    • (1983) IEEE Trans. Acoust., Speech and Sig. Proc. , vol.ASSP-31 , Issue.4 , pp. 955-962
    • Larimore, M.G.1
  • 29
    • 0003807773 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall, 2nd ed.
    • S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 2nd ed., 1991.
    • (1991) Adaptive Filter Theory.
    • Haykin, S.1
  • 30
    • 0024648435 scopus 로고
    • Adaptive IIR filtering
    • Apr.
    • J. J. Sllynk, “Adaptive IIR filtering,” IEEEASSP Mag., vol. 2, pp. 4–21, Apr. 1989.
    • (1989) IEEEASSP Mag. , vol.2 , pp. 4-21
    • Sllynk, J.J.1
  • 31
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Math. Stat., vol. 22, pp. 400–407, 1951.
    • (1951) The Annals of Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 32
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC-22, no. 4, pp. 551–575, 1977.
    • (1977) IEEE Trans. Automat. Contr. , vol.AC-22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 34
    • 0001756412 scopus 로고
    • Estimation of a system pulse transfer function in the presence of noise
    • M. J. Levin, “Estimation of a system pulse transfer function in the presence of noise,” IEEE Trans. Automat. Contr., vol. AC-9, no. 7, pp. 229–235, 1964.
    • (1964) IEEE Trans. Automat. Contr. , vol.AC-9 , Issue.7 , pp. 229-235
    • Levin, M.J.1
  • 35
    • 84984520202 scopus 로고
    • The retrieval of harmonics from a covariance function
    • V. F. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophys. J. Roy. Astron. Soc., 347–366, 1973.
    • (1973) Geophys. J. Roy. Astron. Soc. , pp. 347-366
    • Pisarenko, V.F.1
  • 36
    • 0020140899 scopus 로고
    • Least squares type algorithm for adaptive implementation of pisarenko’s harmonic retrieval method
    • V. U. Reddy, B. Egardt, and T. Kailath, “Least squares type algorithm for adaptive implementation of pisarenko’s harmonic retrieval method,” IEEE Trans. AcoustSpeech and Sig. Proc., vol. ASSP-30, no. 3, pp. 399–405, 1982.
    • (1982) IEEE Trans. AcoustSpeech and Sig. Proc. , vol.ASSP-30 , Issue.3 , pp. 399-405
    • Reddy, V.U.1    Egardt, B.2    Kailath, T.3
  • 37
    • 0017473858 scopus 로고
    • On-line modified least-squares parameter estimation of linear discrete dynamic systems
    • S. Sagara and K. Wada, “On-line modified least-squares parameter estimation of linear discrete dynamic systems,” Int’l. J. Contr., vol. 25, no. 3, pp. 329–343, 1977.
    • (1977) Int’l. J. Contr. , vol.25 , Issue.3 , pp. 329-343
    • Sagara, S.1    Wada, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.