메뉴 건너뛰기




Volumn 49, Issue 2, 1994, Pages 391-407

Robust gift wrapping for the three-dimensional convex hull

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; DIGITAL ARITHMETIC; GEOMETRY; MANY VALUED LOGICS; ROBUSTNESS (CONTROL SYSTEMS); THREE DIMENSIONAL; TOPOLOGY;

EID: 0028517947     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/S0022-0000(05)80056-X     Document Type: Article
Times cited : (31)

References (20)
  • 2
  • 4
    • 84976730298 scopus 로고
    • A new convex hull algorithm for planar sets
    • W. Eddy, A new convex hull algorithm for planar sets, ACM Trans. Math. Software 3 (1977), 398-403.
    • (1977) ACM Trans. Math. Software , vol.3 , pp. 398-403
    • Eddy, W.1
  • 5
    • 0024765831 scopus 로고
    • Stable maintenance of point-set triangulations in two dimensions
    • IEEE Comput. Soc. Press, Los Alamitos, CA
    • S. Fortune, Stable maintenance of point-set triangulations in two dimensions, in “Proceedings, 30th Annual Symposium on Foundations of Computer Science,” pp. 494-499, IEEE Comput. Soc. Press, Los Alamitos, CA, 1989.
    • (1989) Proceedings, 30Th Annual Symposium on Foundations of Computer Science , pp. 494-499
    • Fortune, S.1
  • 6
    • 49649136358 scopus 로고
    • An efficient algorithm for determining the convex hull of a finite planar set
    • R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Inform. Process. Lett. 1 (1972), 132-133.
    • (1972) Inform. Process. Lett , vol.1 , pp. 132-133
    • Graham, R.L.1
  • 9
    • 0015599132 scopus 로고
    • On the identification of the convex hull of a finite set of points in the plane Inform
    • R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Inform. Process. Lett. 2 (1973), 18-21.
    • (1973) Process. Lett , vol.2 , pp. 18-21
    • Jarvis, R.A.1
  • 11
    • 24344504304 scopus 로고
    • Verifiable implementations of geometric algorithms using finite precision arithmetic
    • (D. Kapur and J. L. Mundy, Eds.), MIT Press, Cambridge, MA
    • V. J. Milenkovic, Verifiable implementations of geometric algorithms using finite precision arithmetic, in “Geometric Reasoning” (D. Kapur and J. L. Mundy, Eds.), pp. 377-401, MIT Press, Cambridge, MA, 1989.
    • (1989) Geometric Reasoning , pp. 377-401
    • Milenkovic, V.J.1
  • 12
    • 0039822041 scopus 로고
    • Problems, problems, problems
    • W. O. J. Moser, Problems, problems, problems, Discrete App. Math. 31 (1991), 201-225.
    • (1991) Discrete App. Math , vol.31 , pp. 201-225
    • Moser, W.O.J.1
  • 13
    • 0017453547 scopus 로고
    • Convex hulls of finite sets of points in two and three dimensions
    • F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, Comm. ACM 2 (1977), 87-93.
    • (1977) Comm. ACM , vol.2 , pp. 87-93
    • Preparata, F.P.1    Hong, S.J.2
  • 16
    • 0013335652 scopus 로고
    • Polyeder und Raumeinteilungen
    • Band III, Teil 1, 2. Halfte, IIIAB12
    • E. Steinitz, Polyeder und Raumeinteilungen, in “Encyklopadie der mathematischen Wissen- schaften,” Band III, Teil 1, 2. Halfte, IIIAB12, pp. 1-139, 1916.
    • (1916) Encyklopadie Der Mathematischen Wissen- Schaften , pp. 1-139
    • Steinitz, E.1
  • 17
    • 84983622073 scopus 로고
    • Topologically consistent algorithms related to convex polyhedra
    • Lecture Notes in Computer Science, Springer-Verlag, Berlin
    • K. Sugihara, Topologically consistent algorithms related to convex polyhedra, in “Third International Symposium on Algorithms and Computation, Nagoya, 1992,” Lecture Notes in Computer Science, Vol. 650, pp. 209-218. Springer-Verlag, Berlin, 1992.
    • (1992) Third International Symposium on Algorithms and Computation, Nagoya , vol.650 , pp. 209-218
    • Sugihara, K.1
  • 18
    • 38249024309 scopus 로고
    • Two design principles of geometric algorithms in finite-precision arithmetic
    • K. Sugihara and M. Iri, Two design principles of geometric algorithms in finite-precision arithmetic, Appl. Math. Lett. 2 (1989), 203-206.
    • (1989) Appl. Math. Lett , vol.2 , pp. 203-206
    • Sugihara, K.1    Iri, M.2
  • 19
    • 0026922858 scopus 로고
    • Construction of the Voronoi diagram for “one million” generators in single-precision arithmetic
    • K. Sugihara and M. Iri, Construction of the Voronoi diagram for “one million” generators in single-precision arithmetic, Proc. IEEE 80 (1992), 1471-1484.
    • (1992) Proc. IEEE , vol.80 , pp. 1471-1484
    • Sugihara, K.1    Iri, M.2
  • 20
    • 0002448492 scopus 로고
    • Finding the convex hull facet by facet
    • G. Swart, Finding the convex hull facet by facet, J. Algorithms 6 (1985), 17-48.
    • (1985) J. Algorithms , vol.6 , pp. 17-48
    • Swart, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.