-
1
-
-
0043129462
-
A divide-and-conquer algorithm for computing 4-dimensional convex hull
-
Springer-Verlag, Berlin
-
C. E. Buckley, A divide-and-conquer algorithm for computing 4-dimensional convex hull, in “International Workshop on Computational Geometry, Wurzburg, March 1988,” Lecture Notes in Computer Science, Vol. 333, pp. 113-135, Springer-Verlag, Berlin, 1988.
-
(1988)
International Workshop on Computational Geometry, Wurzburg, March 1988, Lecture Notes in Computer Science
, vol.333
, pp. 113-135
-
-
Buckley, C.E.1
-
4
-
-
84976730298
-
A new convex hull algorithm for planar sets
-
W. Eddy, A new convex hull algorithm for planar sets, ACM Trans. Math. Software 3 (1977), 398-403.
-
(1977)
ACM Trans. Math. Software
, vol.3
, pp. 398-403
-
-
Eddy, W.1
-
5
-
-
0024765831
-
Stable maintenance of point-set triangulations in two dimensions
-
IEEE Comput. Soc. Press, Los Alamitos, CA
-
S. Fortune, Stable maintenance of point-set triangulations in two dimensions, in “Proceedings, 30th Annual Symposium on Foundations of Computer Science,” pp. 494-499, IEEE Comput. Soc. Press, Los Alamitos, CA, 1989.
-
(1989)
Proceedings, 30Th Annual Symposium on Foundations of Computer Science
, pp. 494-499
-
-
Fortune, S.1
-
6
-
-
49649136358
-
An efficient algorithm for determining the convex hull of a finite planar set
-
R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Inform. Process. Lett. 1 (1972), 132-133.
-
(1972)
Inform. Process. Lett
, vol.1
, pp. 132-133
-
-
Graham, R.L.1
-
7
-
-
84935114364
-
Epsilon geometry—Building robust algorithms from imprecise calculations
-
ACM Press, New York
-
L. Guibas, D. Salesin, and J. Stolfi, Epsilon geometry—Building robust algorithms from imprecise calculations, in “Proceedings, 5th Annual Symposium on Computational Geometry,” pp. 208-217, ACM Press, New York, 1989.
-
(1989)
Proceedings, 5Th Annual Symposium on Computational Geometry
, pp. 208-217
-
-
Guibas, L.1
Salesin, D.2
Stolfi, J.3
-
9
-
-
0015599132
-
On the identification of the convex hull of a finite set of points in the plane Inform
-
R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Inform. Process. Lett. 2 (1973), 18-21.
-
(1973)
Process. Lett
, vol.2
, pp. 18-21
-
-
Jarvis, R.A.1
-
11
-
-
24344504304
-
Verifiable implementations of geometric algorithms using finite precision arithmetic
-
(D. Kapur and J. L. Mundy, Eds.), MIT Press, Cambridge, MA
-
V. J. Milenkovic, Verifiable implementations of geometric algorithms using finite precision arithmetic, in “Geometric Reasoning” (D. Kapur and J. L. Mundy, Eds.), pp. 377-401, MIT Press, Cambridge, MA, 1989.
-
(1989)
Geometric Reasoning
, pp. 377-401
-
-
Milenkovic, V.J.1
-
12
-
-
0039822041
-
Problems, problems, problems
-
W. O. J. Moser, Problems, problems, problems, Discrete App. Math. 31 (1991), 201-225.
-
(1991)
Discrete App. Math
, vol.31
, pp. 201-225
-
-
Moser, W.O.J.1
-
13
-
-
0017453547
-
Convex hulls of finite sets of points in two and three dimensions
-
F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions, Comm. ACM 2 (1977), 87-93.
-
(1977)
Comm. ACM
, vol.2
, pp. 87-93
-
-
Preparata, F.P.1
Hong, S.J.2
-
16
-
-
0013335652
-
Polyeder und Raumeinteilungen
-
Band III, Teil 1, 2. Halfte, IIIAB12
-
E. Steinitz, Polyeder und Raumeinteilungen, in “Encyklopadie der mathematischen Wissen- schaften,” Band III, Teil 1, 2. Halfte, IIIAB12, pp. 1-139, 1916.
-
(1916)
Encyklopadie Der Mathematischen Wissen- Schaften
, pp. 1-139
-
-
Steinitz, E.1
-
17
-
-
84983622073
-
Topologically consistent algorithms related to convex polyhedra
-
Lecture Notes in Computer Science, Springer-Verlag, Berlin
-
K. Sugihara, Topologically consistent algorithms related to convex polyhedra, in “Third International Symposium on Algorithms and Computation, Nagoya, 1992,” Lecture Notes in Computer Science, Vol. 650, pp. 209-218. Springer-Verlag, Berlin, 1992.
-
(1992)
Third International Symposium on Algorithms and Computation, Nagoya
, vol.650
, pp. 209-218
-
-
Sugihara, K.1
-
18
-
-
38249024309
-
Two design principles of geometric algorithms in finite-precision arithmetic
-
K. Sugihara and M. Iri, Two design principles of geometric algorithms in finite-precision arithmetic, Appl. Math. Lett. 2 (1989), 203-206.
-
(1989)
Appl. Math. Lett
, vol.2
, pp. 203-206
-
-
Sugihara, K.1
Iri, M.2
-
19
-
-
0026922858
-
Construction of the Voronoi diagram for “one million” generators in single-precision arithmetic
-
K. Sugihara and M. Iri, Construction of the Voronoi diagram for “one million” generators in single-precision arithmetic, Proc. IEEE 80 (1992), 1471-1484.
-
(1992)
Proc. IEEE
, vol.80
, pp. 1471-1484
-
-
Sugihara, K.1
Iri, M.2
-
20
-
-
0002448492
-
Finding the convex hull facet by facet
-
G. Swart, Finding the convex hull facet by facet, J. Algorithms 6 (1985), 17-48.
-
(1985)
J. Algorithms
, vol.6
, pp. 17-48
-
-
Swart, G.1
|