메뉴 건너뛰기




Volumn 41, Issue 9, 1994, Pages 623-627

Residue Multipliers Using Factored Decomposition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; DIFFERENTIATION (CALCULUS); DIGITAL ARITHMETIC; MATHEMATICAL MODELS; NUMBER THEORY; ROM; TABLE LOOKUP;

EID: 0028515598     PISSN: 10577130     EISSN: None     Source Type: Journal    
DOI: 10.1109/82.326592     Document Type: Article
Times cited : (10)

References (10)
  • 1
    • 0019008835 scopus 로고
    • A high-speed low-cost modulo P, multiplier with RNS arithmetic applications
    • Apr.
    • M. A. Soderstrand and C. Vemia, “A high-speed low-cost modulo P, multiplier with RNS arithmetic applications,” Proc. IEEE, vol. 68, pp. 529–532, Apr. 1980.
    • (1980) Proc. IEEE , vol.68 , pp. 529-532
    • Soderstrand, M.A.1    Vemia, C.2
  • 2
    • 0019045595 scopus 로고
    • Complex residue number arithmetic for high-speed signal processing
    • Aug.
    • W. K. Jenkins, “Complex residue number arithmetic for high-speed signal processing,” Electron. Lett., vol. 16, no. 17, pp. 660–661, Aug. 1980.
    • (1980) Electron. Lett. , vol.16 , Issue.17 , pp. 660-661
    • Jenkins, W.K.1
  • 3
    • 0019069143 scopus 로고
    • Implementation of multiplication modulo a prime number with applications to number theoretic transforms
    • vol. C-Oct.
    • G. A. Jullien, “Implementation of multiplication modulo a prime number with applications to number theoretic transforms,” IEEE Trans. Comput., vol. C-29, 899–905, Oct. 1980.
    • (1980) IEEE Trans. Comput , vol.29 , pp. 899-905
    • Jullien, G.A.1
  • 4
    • 0019592222 scopus 로고
    • Large moduli multipliers for signal processing
    • July
    • F. J. Taylor, “Large moduli multipliers for signal processing,” IEEE Trans. Circ. Syst., vol. CAS-28, pp. 731–736, July 1981.
    • (1981) IEEE Trans. Circ. Syst. , vol.CAS-28 , pp. 731-736
    • Taylor, F.J.1
  • 5
    • 0025590430 scopus 로고
    • A fast RNS Galois field multiplier
    • May
    • D. Radhakrishnan and Y. Yuan, “A fast RNS Galois field multiplier,” in Proc. IEEE ISCAS 1990, pp. 2909–2912, May 1990.
    • (1990) Proc. IEEE ISCAS , pp. 2909-2912
    • Radhakrishnan, D.1    Yuan, Y.2
  • 6
    • 84936392331 scopus 로고
    • A complex integer multiplier using the quadratic-polynomial residue number system with numbers of form 22n+ 1
    • Oct.
    • H. C. Shyu, T. K. Truong, and I. S. Reed, “A complex integer multiplier using the quadratic-polynomial residue number system with numbers of form 22n+ 1,” IEEE Trans. Comput., vol. C-36, no. 10, Oct. 1987.
    • (1987) IEEE Trans. Comput. , vol.C-36 , Issue.10
    • Shyu, H.C.1    Truong, T.K.2    Reed, I.S.3
  • 7
    • 84939378394 scopus 로고
    • VLSI residue multiplier modulo a Fermat number
    • Urbana, IL, June
    • I. S. Reed and T. K. Truong, “VLSI residue multiplier modulo a Fermat number,” in Proc. 8th Symp. on Comput. Arith., Urbana, IL, June 1985.
    • (1985) Proc. 8th Symp. on Comput. Arith.
    • Reed, I.S.1    Truong, T.K.2
  • 8
    • 0020139085 scopus 로고
    • A VLSI residue arithmetic multiplier
    • June
    • F. J. Taylor, “A VLSI residue arithmetic multiplier,” IEEE Trans. Comput., vol. C-31, no. 6, June 1982.
    • (1982) IEEE Trans. Comput. , vol.C-31 , Issue.6
    • Taylor, F.J.1
  • 9
    • 0026188738 scopus 로고
    • A VLSI modulo m multiplier
    • July
    • G. Alia and E. Martinelli, “A VLSI modulo m multiplier,” IEEE Trans. Comput., vol. 40, no. 7, July 1991.
    • (1991) IEEE Trans. Comput. , vol.40 , Issue.7
    • Alia, G.1    Martinelli, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.