-
1
-
-
0004216907
-
Algebraic Coding Theory
-
New York: McGraw-Hill
-
E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.
-
(1968)
-
-
Berlekamp, E.R.1
-
2
-
-
84937740421
-
Shift-register synthesis and BCH decoding
-
Jan.
-
J. L. Massey, “shift-register synthesis and BCH decoding,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 122-127, Jan. 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, pp. 122-127
-
-
Massey, J.L.1
-
3
-
-
0016434152
-
A method for solving key equation for decoding Goppa codes
-
Jan.
-
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for solving key equation for decoding Goppa codes,” Inform. Contr., vol. 27, no. 1, pp. 87-99, Jan. 1975.
-
(1975)
Inform. Contr.
, vol.27
, Issue.1
, pp. 87-99
-
-
Sugiyama, Y.1
Kasahara, M.2
Hirasawa, S.3
Namekawa, T.4
-
4
-
-
0024666843
-
A generalized Euclidean algorithm for multisequence shift-register synthesis
-
May
-
G. L. Feng and K. K. Tzeng, “A generalized Euclidean algorithm for multisequence shift-register synthesis,” IEEE Trans. Inform. Theory, vol. 35, pp. 584-594, May 1989.
-
(1989)
IEEE Trans. Inform. Theory
, vol.35
, pp. 584-594
-
-
Feng, G.L.1
Tzeng, K.K.2
-
5
-
-
0026219341
-
A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes
-
Sept.
-
—, “A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 1274-1287, Sept. 1991.
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, pp. 1274-1287
-
-
-
6
-
-
0015353103
-
Generalizations of the BCH bound
-
June
-
C. R. P. Hartmann and K. K. Tzeng, “Generalizations of the BCH bound,” Inform. Contr., vol. 20, no. 5, pp. 489-498, June 1972.
-
(1972)
Inform. Contr.
, vol.20
, Issue.5
, pp. 489-498
-
-
Hartmann, C.R.P.1
Tzeng, K.K.2
-
7
-
-
0020749653
-
A new lower bound for the minimum distance of a cyclic code
-
May
-
C. Roos, “A new lower bound for the minimum distance of a cyclic code,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 330-332, May 1983.
-
(1983)
IEEE Trans. Inform. Theory
, vol.IT-29
, pp. 330-332
-
-
Roos, C.1
-
8
-
-
0345024026
-
Decoding cyclic and BCH codes up to actual minimum distance using nonrecurrent syndrome dependence relations
-
Nov.
-
G. L. Feng and K. K. Tzeng, “Decoding cyclic and BCH codes up to actual minimum distance using nonrecurrent syndrome dependence relations,” IEEE Trans. Inform. Theory, vol. 37, pp. 1716-1723, Nov. 1991.
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, pp. 1716-1723
-
-
Feng, G.L.1
Tzeng, K.K.2
-
9
-
-
0003517783
-
Theory and Practice of Error Control Codes
-
New York: Addison-Wesley
-
R. E. Blahut, Theory and Practice of Error Control Codes. New York: Addison-Wesley, 1983.
-
(1983)
-
-
Blahut, R.E.1
-
10
-
-
0022564721
-
On the minimum distance of cyclic codes
-
Jan.
-
J. H. van Lint and R. M. Wilson, “On the minimum distance of cyclic codes,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 23-40, Jan. 1986.
-
(1986)
IEEE Trans. Inform. Theory
, vol.IT-32
, pp. 23-40
-
-
van Lint, J.H.1
Wilson, R.M.2
-
11
-
-
0023207947
-
Algebraic decoding of the (23, 12, 7) Golay code
-
Jan.
-
M. Elia, “Algebraic decoding of the (23, 12, 7) Golay code,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 150-151, Jan. 1987.
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 150-151
-
-
Elia, M.1
-
12
-
-
0024079081
-
Extension of the BCH decoding algorithm to decode binary cyclic codes up to their maximum error-correction capabilities
-
Sept.
-
P. Stevens, “Extension of the BCH decoding algorithm to decode binary cyclic codes up to their maximum error-correction capabilities,” IEEE Trans. Inform. Theory, vol. 34, pp. 1332-1340, Sept. 1988.
-
(1988)
IEEE Trans. Inform. Theory
, vol.34
, pp. 1332-1340
-
-
Stevens, P.1
-
13
-
-
0025235591
-
Algebraic decoding beyond eBCH of some binary cyclic codes, when e > eBCH
-
Jan.
-
P. Bours, J. C. M. Janssen, M. van Asperdt, and H. C. A. van Tilborg, “Algebraic decoding beyond eBCH of some binary cyclic codes, when e > eBCH,” IEEE Trans. Inform. Theory, vol. 36, pp. 214-222, Jan. 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 214-222
-
-
Bours, P.1
Janssen, J.C.M.2
van Asperdt, M.3
van Tilborg, H.C.A.4
-
14
-
-
0025465298
-
Algebraic decoding of the (32, 16, 8) quadratic residue code
-
July
-
I. S. Reed, X. Yin, and T. K. Truong, “Algebraic decoding of the (32, 16, 8) quadratic residue code,” IEEE Trans. Inform. Theory, vol. 36, pp. 876-880, July 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 876-880
-
-
Reed, I.S.1
Yin, X.2
Truong, T.K.3
-
15
-
-
0026867992
-
The algebraic decoding of the (41, 21, 9) quadratic residue code
-
May
-
I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The algebraic decoding of the (41, 21, 9) quadratic residue code,” IEEE Trans. Inform. Theory, vol. 38, pp. 974-986, May 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 974-986
-
-
Reed, I.S.1
Truong, T.K.2
Chen, X.3
Yin, X.4
|