메뉴 건너뛰기




Volumn 5, Issue 5, 1994, Pages 792-802

Enhanced MLP Performance and Fault Tolerance Resulting from Synaptic Weight Noise During Training

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; FAULT TOLERANT COMPUTER SYSTEMS; LEARNING SYSTEMS; NUMERICAL METHODS; OPTIMIZATION; PROBABILITY; REDUNDANCY; SIGNAL FILTERING AND PREDICTION; SPURIOUS SIGNAL NOISE; VLSI CIRCUITS;

EID: 0028494739     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.317730     Document Type: Article
Times cited : (176)

References (18)
  • 1
    • 0000726115 scopus 로고
    • The effects of precision constraints in a Back propagation learning network
    • P. W. Hollis, J. S. Harper, J. J. Paulos, “The effects of precision constraints in a Back propagation learning network,” Neural Computation, vol. 2, pp. 363–373, 1990.
    • (1990) Neural Computation , vol.2 , pp. 363-373
    • Hollis, P.W.1    Harper, J.S.2    Paulos, J.J.3
  • 2
    • 0000383868 scopus 로고
    • Parallel networks that learn to text
    • T. J. Sejnowski, C. R. Rosenberg, “Parallel networks that learn to text,” Complex Systems, vol. 1, 145–168, 1987.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 3
    • 8044225162 scopus 로고
    • Resource requirements of standard and programmable nets
    • D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press
    • J. L. McClelland, “Resource requirements of standard and programmable nets,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press, pp. 460–487, 1986.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , pp. 460-487
    • McClelland, J.L.1
  • 4
    • 0025404853 scopus 로고
    • Sensitivity of feedforward neural networks to weight errors
    • M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward neural networks to weight errors,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 71–80, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 71-80
    • Stevenson, M.1    Winter, R.2    Widrow, B.3
  • 6
    • 0041529370 scopus 로고
    • Relations between fault tolerance and internal representations for multilayer perceptrons
    • M. D. Emmerson and R. I. Damper, “Relations between fault tolerance and internal representations for multilayer perceptrons,” in Proc. IEEE Conf. Acoustics, Speech and Signal Processing, 1992, pp. 281–284.
    • (1992) Proc. IEEE Conf. Acoustics, Speech and Signal Processing , pp. 281-284
    • Emmerson, M.D.1    Damper, R.I.2
  • 7
    • 0026679384 scopus 로고
    • Maximally fault-tolerant neural networks
    • C. Neti, H. Schneider, and E. D. Young, “Maximally fault-tolerant neural networks,” IEE Trans. Neural Networks, vol. 3, no. 1, pp. 14–23, 1992.
    • (1992) IEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 14-23
    • Neti, C.1    Schneider, H.2    Young, E.D.3
  • 9
    • 0026202292 scopus 로고
    • Analog noise-enhanced learning in neural network circuits
    • A. F. Murray, “Analog noise-enhanced learning in neural network circuits,” Electronics Letters, vol. 2, no. 17, pp. 1546—1548, 1991.
    • (1991) Electronics Letters , vol.2 , Issue.17 , pp. 1546-1548
    • Murray, A.F.1
  • 10
    • 5844424454 scopus 로고
    • multilayer perceptron learning optimised for on-chip implementation-A noise robust system
    • A. F. Murray, “multilayer perceptron learning optimised for on-chip implementation—A noise robust system,” Neural Computation, vol. 4, no. 3, 366–381, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 366-381
    • Murray, A.F.1
  • 11
    • 0015388888 scopus 로고
    • Spontaneous behaviour in neural networks
    • J. G. Taylor, “Spontaneous behaviour in neural networks,” J. Theor. Biol., vol. 36, 513–528, 1972.
    • (1972) J. Theor. Biol , vol.36 , pp. 513-528
    • Taylor, J.G.1
  • 12
    • 0039521491 scopus 로고
    • A stochastic version of the delta rule
    • S. J. Hanson, “A stochastic version of the delta rule,” Physica D, vol. 42, pp. 265–272, 1990.
    • (1990) Physica D , vol.42 , pp. 265-272
    • Hanson, S.J.1
  • 13
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 14
    • 0026624071 scopus 로고
    • Using additive noise in backpropagation training
    • L. Holmstrom and P. Koistinen, “Using additive noise in backpropagation training” IEEE Trans. Neural Networks, vol. 3, no. 1, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1
    • Holmstrom, L.1    Koistinen, P.2
  • 15
    • 0005887693 scopus 로고
    • Curvature-driven smoothing in backpropagation neural networks
    • C. Bishop, “Curvature-driven smoothing in backpropagation neural networks,” IJCNN, vol. 2, pp. 749–752, 1990.
    • (1990) IJCNN , vol.2 , pp. 749-752
    • Bishop, C.1
  • 16
    • 0026858102 scopus 로고
    • Noise injection into inputs in Back propagation learning
    • K. Matsuoka, “Noise injection into inputs in Back propagation learning,” IEEE Trans. Syst. Man Cyber., vol. 22, no. 3, pp. 436–440, 1992.
    • (1992) IEEE Trans. Syst. Man Cyber , vol.22 , Issue.3 , pp. 436-440
    • Matsuoka, K.1
  • 18
    • 0027629615 scopus 로고
    • Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements
    • A. F. Murray and P. J. Edwards, “Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements,” IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 722–725, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 722-725
    • Murray, A.F.1    Edwards, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.