-
1
-
-
0000726115
-
The effects of precision constraints in a Back propagation learning network
-
P. W. Hollis, J. S. Harper, J. J. Paulos, “The effects of precision constraints in a Back propagation learning network,” Neural Computation, vol. 2, pp. 363–373, 1990.
-
(1990)
Neural Computation
, vol.2
, pp. 363-373
-
-
Hollis, P.W.1
Harper, J.S.2
Paulos, J.J.3
-
2
-
-
0000383868
-
Parallel networks that learn to text
-
T. J. Sejnowski, C. R. Rosenberg, “Parallel networks that learn to text,” Complex Systems, vol. 1, 145–168, 1987.
-
(1987)
Complex Systems
, vol.1
, pp. 145-168
-
-
Sejnowski, T.J.1
Rosenberg, C.R.2
-
3
-
-
8044225162
-
Resource requirements of standard and programmable nets
-
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press
-
J. L. McClelland, “Resource requirements of standard and programmable nets,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press, pp. 460–487, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, pp. 460-487
-
-
McClelland, J.L.1
-
4
-
-
0025404853
-
Sensitivity of feedforward neural networks to weight errors
-
M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward neural networks to weight errors,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 71–80, 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, Issue.1
, pp. 71-80
-
-
Stevenson, M.1
Winter, R.2
Widrow, B.3
-
5
-
-
0026400249
-
Fault tolerance and redundancy of neural nets for the classification of acoustic data
-
M. D. Emmerson, R. I. Damper, A. J. G. Hey, and C. Upstill, “Fault tolerance and redundancy of neural nets for the classification of acoustic data,” Proc. IEEE Conf. Acoustics, Speech and Signal Processing, pp. 1053–1056, 1992.
-
(1992)
Proc. IEEE Conf. Acoustics, Speech and Signal Processing
, pp. 1053-1056
-
-
Emmerson, M.D.1
Damper, R.I.2
Hey, A.J.G.3
Upstill, C.4
-
7
-
-
0026679384
-
Maximally fault-tolerant neural networks
-
C. Neti, H. Schneider, and E. D. Young, “Maximally fault-tolerant neural networks,” IEE Trans. Neural Networks, vol. 3, no. 1, pp. 14–23, 1992.
-
(1992)
IEE Trans. Neural Networks
, vol.3
, Issue.1
, pp. 14-23
-
-
Neti, C.1
Schneider, H.2
Young, E.D.3
-
8
-
-
0042531397
-
Fault tolerance in feed forward artificial neural networks
-
C. H. Sequin and R. D. Clay, “Fault tolerance in feed forward artificial neural networks,” Neural Networks: Concepts, Applications and Implementations, vol. 4, pp. 111–141, 1991.
-
(1991)
Neural Networks: Concepts, Applications and Implementations
, vol.4
, pp. 111-141
-
-
Sequin, C.H.1
Clay, R.D.2
-
9
-
-
0026202292
-
Analog noise-enhanced learning in neural network circuits
-
A. F. Murray, “Analog noise-enhanced learning in neural network circuits,” Electronics Letters, vol. 2, no. 17, pp. 1546—1548, 1991.
-
(1991)
Electronics Letters
, vol.2
, Issue.17
, pp. 1546-1548
-
-
Murray, A.F.1
-
10
-
-
5844424454
-
multilayer perceptron learning optimised for on-chip implementation-A noise robust system
-
A. F. Murray, “multilayer perceptron learning optimised for on-chip implementation—A noise robust system,” Neural Computation, vol. 4, no. 3, 366–381, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 366-381
-
-
Murray, A.F.1
-
11
-
-
0015388888
-
Spontaneous behaviour in neural networks
-
J. G. Taylor, “Spontaneous behaviour in neural networks,” J. Theor. Biol., vol. 36, 513–528, 1972.
-
(1972)
J. Theor. Biol
, vol.36
, pp. 513-528
-
-
Taylor, J.G.1
-
12
-
-
0039521491
-
A stochastic version of the delta rule
-
S. J. Hanson, “A stochastic version of the delta rule,” Physica D, vol. 42, pp. 265–272, 1990.
-
(1990)
Physica D
, vol.42
, pp. 265-272
-
-
Hanson, S.J.1
-
13
-
-
26444479778
-
Optimization by simulated annealing
-
S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
15
-
-
0005887693
-
Curvature-driven smoothing in backpropagation neural networks
-
C. Bishop, “Curvature-driven smoothing in backpropagation neural networks,” IJCNN, vol. 2, pp. 749–752, 1990.
-
(1990)
IJCNN
, vol.2
, pp. 749-752
-
-
Bishop, C.1
-
16
-
-
0026858102
-
Noise injection into inputs in Back propagation learning
-
K. Matsuoka, “Noise injection into inputs in Back propagation learning,” IEEE Trans. Syst. Man Cyber., vol. 22, no. 3, pp. 436–440, 1992.
-
(1992)
IEEE Trans. Syst. Man Cyber
, vol.22
, Issue.3
, pp. 436-440
-
-
Matsuoka, K.1
-
17
-
-
0000494466
-
Optimal brain damage
-
San Mateo, CA: Morgan Kaufmann
-
Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage” in Neural Information Processing Systems (NIPS) Conference, San Mateo, CA: Morgan Kaufmann, 1990, pp. 598–605.
-
(1990)
Neural Information Processing Systems (NIPS)
, pp. 598-605
-
-
Le Cun, Y.1
Denker, J.S.2
Solla, S.A.3
-
18
-
-
0027629615
-
Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements
-
A. F. Murray and P. J. Edwards, “Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements,” IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 722–725, 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, Issue.4
, pp. 722-725
-
-
Murray, A.F.1
Edwards, P.J.2
|