메뉴 건너뛰기




Volumn 43, Issue 3, 1994, Pages 773-780

Adaptive Packet Equalization for Indoor Radio Channel Using Multilayer Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE DECISION FEEDBACK EQUALIZATION; ADDITIVE GAUSSIAN NOISE; INDOOR RADIO CHANNEL; LEAST SQUARES ROUTINE; MULTILAYER PERCEPTRON STRUCTURE; TIME DIVISION MULTIPLE ACCESS;

EID: 0028493646     PISSN: 00189545     EISSN: 19399359     Source Type: Journal    
DOI: 10.1109/25.312768     Document Type: Article
Times cited : (11)

References (14)
  • 1
    • 0023288305 scopus 로고
    • A statistical model for indoor multipath propagation
    • Feb.
    • A. M. Saleh and R. A. Valenzuala, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., vol. SAC-5, pp. 128-137, Feb. 1987.
    • (1987) IEEE J. Select. Areas Commun , vol.SAC-5 , pp. 128-137
    • Saleh, A.M.1    Valenzuala, R.A.2
  • 2
    • 0024480661 scopus 로고
    • Channel modeling and adaptive equalization of indoor radio channels,'’ IEEE J. Select. Areas Commun., vol. SAC-7, pp. 114-121, Jan. 1989
    • Jan.
    • T. A. Sexton and K. Pahlavan, “Channel modeling and adaptive equalization of indoor radio channels,'’ IEEE J. Select. Areas Commun., vol. SAC-7, pp. 114-121, Jan. 1989.
    • (1989) , vol.SAC-7 , pp. 114-121
    • Sexton, T.A.1    Pahlavan, K.2
  • 3
    • 0027187631 scopus 로고
    • Decision feedback equalization of the indoor radio channel
    • Jan.
    • K. Pahlavan, S. J. Howard, and T. A. Sexton, “Decision feedback equalization of the indoor radio channel,” IEEE Tran. Commun., vol. 41, pp. 164-170, Jan. 1993.
    • (1993) IEEE Tran. Commun , vol.41 , pp. 164-170
    • Pahlavan, K.1    Howard, S.J.2    Sexton, T.A.3
  • 4
    • 0025477542 scopus 로고
    • Decision feedback equalization using neural network structures and performance comparison with standard architecture,'’ IEE Proc., vol. 137, part. I, no. 4, pp. 221-225, Aug. 1990
    • Aug.
    • S. Siu, G. J. Gibson, and C. F. N. Cowan, “Decision feedback equalization using neural network structures and performance comparison with standard architecture,'’ IEE Proc., vol. 137, part. I, no. 4, pp. 221-225, Aug. 1990.
    • (1990) , vol.137 , Issue.4 , pp. 221-225
    • Siu, S.1    Gibson, G.J.2    Cowan, C.F.N.3
  • 5
    • 0025636775 scopus 로고
    • The Stone-Weierstrass theorem and its application to neural nets
    • M. E. Cotter, “The Stone-Weierstrass theorem and its application to neural nets,” IEEE Trans. Neural Networks, vol. 1, pp. 290-295, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 290-295
    • Cotter, M.E.1
  • 6
    • 0024861871 scopus 로고
    • Approximations by superposition of a sigmoidal function Math Contr. Syst. Signals, vol. 2, no. 4, 1989
    • G. Cybenko, ‘'Approximations by superposition of a sigmoidal function,” Math Contr. Syst. Signals, vol. 2, no. 4, 1989.
    • (1989) , vol.2 , Issue.4
    • Cybenko, G.1
  • 7
    • 84937652370 scopus 로고
    • Why two hidden layers are better than one
    • June
    • D. Chester, “Why two hidden layers are better than one,” in Proc. Int. Joint Conf. Neural Networks, Washington, DC, June 1989, pp. 1-613-1-618.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 1-613
    • Chester, D.1
  • 8
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Jan.
    • S. C. Huang and Y. F. Huang, “Bounds on the number of hidden neurons in multilayer perceptrons,” IEEE Trans. Neural Networks, vol. 2, pp. 47-55, Jan. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 9
    • 0023982347 scopus 로고
    • Neural nets for adaptive filtering and adaptive pattern recognition,'’ IEEE Comput. Mag., vol. 21, pp. 25-39, Mar. 1988
    • B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern recognition,'’ IEEE Comput. Mag., vol. 21, pp. 25-39, Mar. 1988.
    • (1988) , vol.21 , pp. 25-39
    • Widrow, B.1    Winter, R.2
  • 11
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • Jan.
    • S. Z. Qin, H. T. Su and T. J. McAvoy, “Comparison of four neural net learning methods for dynamic system identification,” IEEE Trans. Neural Networks, vol. 3, pp. 122-130, Jan. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 122-130
    • Qin, S.Z.1    Su, H.T.2    McAvoy, T.J.3
  • 12
    • 0027666791 scopus 로고
    • Efficient learning algorithms for neural networks (ELEANNE)
    • N. B. Karayiannis and A. N. Venetsanopoulos, “Efficient learning algorithms for neural networks (ELEANNE),” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 1372-1383. Sep/Oct 1993.
    • (1993) IEEE Trans. Syst , vol.23 , pp. 1372-1383
    • Karayiannis, N.B.1    Venetsanopoulos, A.N.2
  • 13
    • 0026841022 scopus 로고
    • real-time learning algorithm for a multilayered neural network based on the extended Kalman filter
    • Apr.
    • Y. Iiguni, H. Sakai, and H. Tokumaru, real-time learning algorithm for a multilayered neural network based on the extended Kalman filter,” IEEE Tran. Signal Process., vol. 40, pp. 959-966, Apr. 1992.
    • (1992) IEEE Tran. Signal Process , vol.40 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 14
    • 84939043216 scopus 로고
    • Neural-based packet equalization for indoor radio channel by efficient learning algorithms
    • July
    • C. M. Tseng, “Neural-based packet equalization for indoor radio channel by efficient learning algorithms,” MS thesis (supervised by P. R. Chang), Institute of Communication Arts and Science, National Chiao-Tung Univ., Hsinchu, Taiwan, July, 1993.
    • (1993) MS thesis (supervised by P. R. Chang)
    • Tseng, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.