-
1
-
-
84941493075
-
On compactly supported spline wavelets and a duality principle
-
College Station, TX, to be published
-
C. K. Chui and J. Z. Wang, “On compactly supported spline wavelets and a duality principle,” CAT rep. 213, Texas A&M Univ., College Station, TX, 1990, to be published.
-
(1990)
CAT rep. 213, Texas A&M Univ.
-
-
Chui, C.K.1
Wang, J.Z.2
-
5
-
-
0002971198
-
Wavelet transform maxima and multiscale edges
-
Cambridge, MA: Jones and BartLett
-
S. Mallat, “Wavelet transform maxima and multiscale edges,” in Wavelets and Their Applications, M. B. Ruskai et al., Eds. Cambridge, MA: Jones and Bartlett, 1991.
-
(1991)
Wavelets and Their Applications
-
-
Mallat, S.1
Ruskai, M.B.2
-
7
-
-
0026846049
-
Local tomogaphy
-
Apr.
-
A. Faridani, E. Ritman, and K. T. Smith, “Local tomogaphy,” SIAM J. Appl. Math., vol. 52, no. 2, pp. 459–484, Apr. 1992.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, Issue.2
, pp. 459-484
-
-
Faridani, A.1
Ritman, E.2
Smith, K.T.3
-
8
-
-
0012282652
-
Local and global tomography
-
New York: Springer-Verlag
-
A. Faridani, F. Keinert, F. Natterer, E. L. Ritman, and K. T. Smith, “Local and global tomography,” in Signal Processing, IMA Vols. in Math., Appl., vol 23. New York: Springer-Verlag, 1990, pp. 241–255.
-
(1990)
Signal Processing, IMA Vols. in Math., Appl
, vol.23
, pp. 241-255
-
-
Faridani, A.1
Keinert, F.2
Natterer, F.3
Ritman, E.L.4
Smith, K.T.5
-
9
-
-
0012307593
-
The interior Radon transform
-
June
-
P. Maass, “The interior Radon transform,” SIAM J. Appl. Math., vol. 52, no. 3, pp. 710–724, June 1992.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, Issue.3
, pp. 710-724
-
-
Maass, P.1
-
10
-
-
0026839661
-
Detection of edges from projections
-
Mar.
-
N. Srinivasa, K. R. Ramakrishanan, and K. Rajgopal, “Detection of edges from projections,” IEEE Trans. Med. Imaging, vol. 11, no. 1, Mar. 1992.
-
(1992)
IEEE Trans. Med. Imaging
, vol.11
, Issue.1
-
-
Srinivasa, N.1
Ramakrishanan, K.R.2
Rajgopal, K.3
-
11
-
-
80055007059
-
A family of polynomial spline wavelet transforms
-
NCRR rep153/90
-
M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet transforms,” NCRR rep. 153/90, Nat. Inst. Health.
-
Nat. Inst. Health
-
-
Unser, M.1
Aldroubi, A.2
Eden, M.3
-
12
-
-
0026743539
-
On the asympototic convergence of B-spline wavelets to Gabor functions
-
Mar.
-
M. Unser, A. Aldroubi, and M. Eden, “On the asympototic convergence of B-spline wavelets to Gabor functions,” IEEE Trans. Inform. Theory, vol. 38, no. 2, Mar. 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, Issue.2
-
-
Unser, M.1
Aldroubi, A.2
Eden, M.3
-
14
-
-
85057636189
-
Incomplete data problems in x-ray computerized tomography
-
A. K. Louis and A. Reider, “Incomplete data problems in x-ray computerized tomography,” Numeriche Mathemtik, vol. 56, 1989.
-
(1989)
Numeriche Mathemtik
, vol.56
-
-
Louis, A.K.1
Reider, A.2
-
15
-
-
0015116113
-
Three dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms
-
G. N. Ramachandran and A. V. Lakshminarayanan, “Three dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms,” in Proc. Nat. Acad. Sci., vol. 68, 1971, pp. 2236–2240.
-
(1971)
Proc. Nat. Acad. Sci.
, vol.68
, pp. 2236-2240
-
-
Ramachandran, G.N.1
Lakshminarayanan, A.V.2
-
16
-
-
84941490089
-
Image reconstruction from projections II: Modified backprojection methods
-
R. M. Lewitt, R. H. T. Bates, and T. M. Peters, “Image reconstruction from projections II: Modified backprojection methods,” Optik, vol. 50, pp. 180–205.
-
Optik
, vol.50
, pp. 180-205
-
-
Lewitt, R.M.1
Bates, R.H.T.2
Peters, T.M.3
-
17
-
-
84941516195
-
The point spread function for the convolution algorithm
-
(Stanford, CA), Aug.
-
O. J. Tretiak, “The point spread function for the convolution algorithm,” inDigest Tech. Papers (Stanford, CA), Aug. 4–7, 1975.
-
(1975)
Digest Tech. Papers
, pp. 4-7
-
-
Tretiak, O.J.1
-
18
-
-
21244488217
-
Reconstruction from efficiently sampled data in parallel-beam computed tomography
-
A. Faridani, “Reconstruction from efficiently sampled data in parallel-beam computed tomography,” in Inverse Problems and Imaging, G. F. Roach, Ed. Pitman Research Notes in Mathematics, vol. 245, 1991, pp. 68–102.
-
(1991)
Inverse Problems and Imaging, G. F. Roach, Ed. Pitman Research Notes in Mathematics
, vol.245
, pp. 68-102
-
-
Faridani, A.1
-
19
-
-
0018125649
-
Sampling the Radon transform with beams of finite width
-
A. M. Cormack, “Sampling the Radon transform with beams of finite width,” Phys. Med. Biol., vol. 23, pp. 1141–1148, 1978.
-
(1978)
Phys. Med. Biol
, vol.23
, pp. 1141-1148
-
-
Cormack, A.M.1
-
20
-
-
84941514299
-
Sampling and resolution in diffraction tomography II: An error analysis of the filtered backpropogation algorithm
-
to be published
-
A. Faridani, “Sampling and resolution in diffraction tomography II: An error analysis of the filtered backpropogation algorithm,” to be published.
-
-
-
Faridani, A.1
-
21
-
-
0001491105
-
The inverse discrete Radon transform with applications to tomographic imaging using projection data
-
A. G. Lindgren and P. A. Rattey, “The inverse discrete Radon transform with applications to tomographic imaging using projection data,” Advances Elec., Electron. Physics, vol. 56, pp. 359–410, 1981.
-
(1981)
Advances Elec., Electron. Physics
, vol.56
, pp. 359-410
-
-
Lindgren, A.G.1
Rattey, P.A.2
-
22
-
-
0025499943
-
Multidimensional digital image representations using generalized Kaiser-Bessel window functions
-
Oct.
-
R. M. Lewitt, “Multidimensional digital image representations using generalized Kaiser-Bessel window functions,” J. Opt. Soc. Am. A, vol. Oct. 1990.
-
(1990)
J. Opt. Soc. Am. A
-
-
Lewitt, R.M.1
-
23
-
-
42149197029
-
The circular harmonic Radon transform
-
C. H. Chapman and P. W. Cary, “The circular harmonic Radon transform,” Inverse Problems, vol. 2, pp. 23–49, 1986.
-
(1986)
Inverse Problems
, vol.2
, pp. 23-49
-
-
Chapman, C.H.1
Cary, P.W.2
-
24
-
-
84941489455
-
A Hankel tranform approach to tomographic image reconstruction
-
Mar.
-
W. E. Higgins and D. C. Munson, “A Hankel tranform approach to tomographic image reconstruction,” IEEE Trans. Med. Imaging, Mar.
-
IEEE Trans. Med. Imaging
-
-
Higgins, W.E.1
Munson, D.C.2
-
25
-
-
38049066552
-
The divergent beam X-ray transform
-
C. Hamaker, K. T. Smith, D. C. Solmon, and S. L. Wagner, “The divergent beam X-ray transform,” Rocky Mountaion J. Math., vol. 10, pp. 253–283, 1980.
-
(1980)
Rocky Mountaion J. Math.
, vol.10
, pp. 253-283
-
-
Hamaker, C.1
Smith, K.T.2
Solmon, D.C.3
Wagner, S.L.4
-
26
-
-
0001618573
-
Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets
-
New York: Associated Press
-
P. Auscher, G. Weiss, and M. V. Wickerhauser, “Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets,” in Wavelets, A Tutorial in Theory and Applications, C. Chui, Ed. New York: Associated Press, 1990.
-
(1990)
Wavelets, A Tutorial in Theory and Applications
-
-
Auscher, P.1
Weiss, G.2
Wickerhauser, M.V.3
Chui, C.4
-
27
-
-
0026909276
-
Examples of local tomogaphy
-
Aug.
-
A. Faridani, E. Ritman, and K. T. Smith, “Examples of local tomogaphy,” SIAM J. Appl. Math., vol. 52, no. 4, pp. 1193–1198, Aug. 1992
-
(1992)
SIAM J. Appl. Math.
, vol.52
, Issue.4
, pp. 1193-1198
-
-
Faridani, A.1
Ritman, E.2
Smith, K.T.3
-
28
-
-
84941512841
-
Optimal time-frequency bases for localized tomography
-
Dartmouth College, Hanover, NH
-
T. Olson, “Optimal time-frequency bases for localized tomography,” Tech. Rep., Dartmouth College, Hanover, NH.
-
Tech. Rep.
-
-
Olson, T.1
|