-
3
-
-
0020191832
-
Image restoration by the method of convex projections: Part 1—Theory
-
D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part 1—Theory,” IEEE Trans. Med. Imag., vol. 1, no. 2, pp. 81–94, 1982.
-
(1982)
IEEE Trans. Med. Imag
, vol.1
, Issue.2
, pp. 81-94
-
-
Youla, D.C.1
Webb, H.2
-
4
-
-
30244567151
-
Alternating convex projection methods for covariance control design
-
(Monticello, IL) also, Int. J. Contr., to appear.
-
K. M. Grigoriadis and R. E. Skelton, “Alternating convex projection methods for covariance control design,” in Proc. 30th Allerton Conf. Commun. Contr. Comp. (Monticello, IL), 1992; also, Int. J. Contr., to appear.
-
(1992)
Proc. 30th Allerton Conf. Commun. Contr. Comp
-
-
Grigoriadis, K.M.1
Skelton, R.E.2
-
5
-
-
0000379660
-
Computing the nearest symmetric positive semidefinite matrix
-
N. J. Higham, “Computing the nearest symmetric positive semidefinite matrix,” Linear Algebra Appl., vol. 103, pp. 103–118, 1988.
-
(1988)
Linear Algebra Appl
, vol.103
, pp. 103-118
-
-
Higham, N.J.1
-
6
-
-
84968503398
-
Proximity maps for convex sets
-
W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,” Proc. Amer. Math. Soc., vol. 12, pp. 448–450, 1959.
-
(1959)
Proc. Amer. Math. Soc
, vol.12
, pp. 448-450
-
-
Cheney, W.1
Goldstein, A.A.2
-
7
-
-
33845708830
-
The method of projections for finding the common point of convex sets
-
L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of projections for finding the common point of convex sets,” USSR Computat. Math. Math. Phys., vol. 7, pp. 1–24, 1967.
-
(1967)
USSR Computat. Math. Math. Phys
, vol.7
, pp. 1-24
-
-
Gubin, L.G.1
Polyak, B.T.2
Raik, E.V.3
-
8
-
-
0002436271
-
A method for finding projections onto the intersection of convex sets in Hilbert space
-
J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the intersection of convex sets in Hilbert space,” Lecture Notes in Statistics, vol. 37, 28–47, 1986.
-
(1986)
Lecture Notes in Statistics
, vol.37
, pp. 28-47
-
-
Boyle, J.P.1
Dykstra, R.L.2
-
9
-
-
0023860607
-
A successive projection method
-
S. -P. Han, “A successive projection method,” Math. Programming, vol. 40, pp. 1–14, 1988.
-
(1988)
Math. Programming
, vol.40
, pp. 1-14
-
-
Han, S.-P.1
-
10
-
-
0022705171
-
Extensions of a result on the synthesis of signals in the presence of inconsistent constraints
-
D. C. Youla and V. Velasco, “Extensions of a result on the synthesis of signals in the presence of inconsistent constraints,” IEEE Trans. Circ. Syst., vol. CAS-33, no. 4, 1986.
-
(1986)
IEEE Trans. Circ. Syst
, vol.CAS-33
, Issue.4
-
-
Youla, D.C.1
Velasco, V.2
-
12
-
-
0001547779
-
The cutting-plane algorithm for solving convex programs
-
J. E. Kelly, “The cutting-plane algorithm for solving convex programs,” J. Soc. Indust. Appl. Math., vol. 8, no. 4, pp. 703–712, 1960.
-
(1960)
J. Soc. Indust. Appl. Math
, vol.8
, Issue.4
, pp. 703-712
-
-
Kelly, J.E.1
-
13
-
-
0019635237
-
The ellipsoid method: A survey
-
R. G. Bland, D. Goldfarb, and M. J. Todd, “The ellipsoid method: A survey,” Oper. Res., vol. 29, no. 6, pp. 1039–1091, 1981.
-
(1981)
Oper. Res
, vol.29
, Issue.6
, pp. 1039-1091
-
-
Bland, R.G.1
Goldfarb, D.2
Todd, M.J.3
|