메뉴 건너뛰기




Volumn 42, Issue 7, 1994, Pages 1873-1875

Application of Alternating Convex Projection Methods for Computation of Positive Toeplitz Matrices

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; CONCENTRATION (PROCESS); CONSTRAINT THEORY; CONTROL THEORY; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; OPTIMIZATION;

EID: 0028467590     PISSN: 1053587X     EISSN: 19410476     Source Type: Journal    
DOI: 10.1109/78.298303     Document Type: Article
Times cited : (25)

References (14)
  • 3
    • 0020191832 scopus 로고
    • Image restoration by the method of convex projections: Part 1—Theory
    • D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part 1—Theory,” IEEE Trans. Med. Imag., vol. 1, no. 2, pp. 81–94, 1982.
    • (1982) IEEE Trans. Med. Imag , vol.1 , Issue.2 , pp. 81-94
    • Youla, D.C.1    Webb, H.2
  • 4
    • 30244567151 scopus 로고
    • Alternating convex projection methods for covariance control design
    • (Monticello, IL) also, Int. J. Contr., to appear.
    • K. M. Grigoriadis and R. E. Skelton, “Alternating convex projection methods for covariance control design,” in Proc. 30th Allerton Conf. Commun. Contr. Comp. (Monticello, IL), 1992; also, Int. J. Contr., to appear.
    • (1992) Proc. 30th Allerton Conf. Commun. Contr. Comp
    • Grigoriadis, K.M.1    Skelton, R.E.2
  • 5
    • 0000379660 scopus 로고
    • Computing the nearest symmetric positive semidefinite matrix
    • N. J. Higham, “Computing the nearest symmetric positive semidefinite matrix,” Linear Algebra Appl., vol. 103, pp. 103–118, 1988.
    • (1988) Linear Algebra Appl , vol.103 , pp. 103-118
    • Higham, N.J.1
  • 6
    • 84968503398 scopus 로고
    • Proximity maps for convex sets
    • W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,” Proc. Amer. Math. Soc., vol. 12, pp. 448–450, 1959.
    • (1959) Proc. Amer. Math. Soc , vol.12 , pp. 448-450
    • Cheney, W.1    Goldstein, A.A.2
  • 7
    • 33845708830 scopus 로고
    • The method of projections for finding the common point of convex sets
    • L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of projections for finding the common point of convex sets,” USSR Computat. Math. Math. Phys., vol. 7, pp. 1–24, 1967.
    • (1967) USSR Computat. Math. Math. Phys , vol.7 , pp. 1-24
    • Gubin, L.G.1    Polyak, B.T.2    Raik, E.V.3
  • 8
    • 0002436271 scopus 로고
    • A method for finding projections onto the intersection of convex sets in Hilbert space
    • J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the intersection of convex sets in Hilbert space,” Lecture Notes in Statistics, vol. 37, 28–47, 1986.
    • (1986) Lecture Notes in Statistics , vol.37 , pp. 28-47
    • Boyle, J.P.1    Dykstra, R.L.2
  • 9
    • 0023860607 scopus 로고
    • A successive projection method
    • S. -P. Han, “A successive projection method,” Math. Programming, vol. 40, pp. 1–14, 1988.
    • (1988) Math. Programming , vol.40 , pp. 1-14
    • Han, S.-P.1
  • 10
    • 0022705171 scopus 로고
    • Extensions of a result on the synthesis of signals in the presence of inconsistent constraints
    • D. C. Youla and V. Velasco, “Extensions of a result on the synthesis of signals in the presence of inconsistent constraints,” IEEE Trans. Circ. Syst., vol. CAS-33, no. 4, 1986.
    • (1986) IEEE Trans. Circ. Syst , vol.CAS-33 , Issue.4
    • Youla, D.C.1    Velasco, V.2
  • 12
    • 0001547779 scopus 로고
    • The cutting-plane algorithm for solving convex programs
    • J. E. Kelly, “The cutting-plane algorithm for solving convex programs,” J. Soc. Indust. Appl. Math., vol. 8, no. 4, pp. 703–712, 1960.
    • (1960) J. Soc. Indust. Appl. Math , vol.8 , Issue.4 , pp. 703-712
    • Kelly, J.E.1
  • 13
    • 0019635237 scopus 로고
    • The ellipsoid method: A survey
    • R. G. Bland, D. Goldfarb, and M. J. Todd, “The ellipsoid method: A survey,” Oper. Res., vol. 29, no. 6, pp. 1039–1091, 1981.
    • (1981) Oper. Res , vol.29 , Issue.6 , pp. 1039-1091
    • Bland, R.G.1    Goldfarb, D.2    Todd, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.