메뉴 건너뛰기




Volumn 42, Issue 7, 1994, Pages 1653-1661

Kernel Synthesis for Generalized Time-Frequency Distributions Using the Method of Alternating Projections Onto Convex Sets

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONSTRAINT THEORY; FOURIER TRANSFORMS; FREQUENCY DOMAIN ANALYSIS; GRAPHIC METHODS; MATHEMATICAL MODELS; NUMERICAL ANALYSIS; SET THEORY; TIME DOMAIN ANALYSIS;

EID: 0028465832     PISSN: 1053587X     EISSN: 19410476     Source Type: Journal    
DOI: 10.1109/78.298273     Document Type: Article
Times cited : (26)

References (22)
  • 3
    • 0001458386 scopus 로고
    • The Wigner distribution, A tool for time-frequency signal analysis, Part 3: Relations with other time-frequency signal transformations
    • T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution, A tool for time-frequency signal analysis, Part 3: Relations with other time-frequency signal transformations,” Philips J. Res., vol. 35, pp. 373–389, 1980.
    • (1980) Philips J. Res , vol.35 , pp. 373-389
    • Claasen, T.A.C.M.1    Mecklenbrauker, W.F.G.2
  • 4
    • 0141582037 scopus 로고
    • Generalized phase-space distribution functions
    • L. Cohen, “Generalized phase-space distribution functions,” J. Math. Phys., vol. 7, pp. 781–786, 1966.
    • (1966) J. Math. Phys , vol.7 , pp. 781-786
    • Cohen, L.1
  • 5
    • 0024705330 scopus 로고
    • Time-frequency distributions—;A review
    • L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE, vol. 77, pp. 941–981, 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 941-981
    • Cohen, L.1
  • 6
    • 0023269685 scopus 로고
    • Application of the generalized time-frequency representation to speech signal analysis
    • Victoria, B.C., Canada, June
    • L. E. Atlas, Y. Zhao, and R. J. Marks, II, “Application of the generalized time-frequency representation to speech signal analysis,” in Proc. IEEE Pacific Rim Conf. Commun., Comput., Signal Processing, Victoria, B.C., Canada, June 1987, pp. 517–519.
    • (1987) Proc. IEEE Pacific Rim Conf. Commun., Comput., Signal Processing , pp. 517-519
    • Atlas, L.E.1    Zhao, Y.2    Marks, R.J.3
  • 7
    • 0019054579 scopus 로고
    • The Wigner distribution, A tool for time-frequency signal analysis, Part 2: Discrete time signals
    • T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution, A tool for time-frequency signal analysis, Part 2: Discrete time signals,” Philips J. Res., vol. 35, pp. 277–300, 1980.
    • (1980) Philips J. Res , vol.35 , pp. 277-300
    • Claasen, T.A.C.M.1    Mecklenbrauker, W.F.G.2
  • 8
    • 0024681555 scopus 로고
    • Improved time-frequency representation of multicomponent signals using exponential kernels
    • H. Choi and W. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 862–871, 1989.
    • (1989) IEEE Trans. Acoust., Speech, Signal Processing , vol.37 , pp. 862-871
    • Choi, H.1    Williams, W.2
  • 9
    • 0025463449 scopus 로고
    • The use of cone-shape kernels for generalized time-frequency representations of nonstationary signals
    • Y. Zhao, L. E. Atlas, and R. J. Marks, II, “The use of cone-shape kernels for generalized time-frequency representations of nonstationary signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 1084–1091, 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Processing , vol.38 , pp. 1084-1091
    • Zhao, Y.1    Atlas, L.E.2    Marks, R.J.3
  • 10
    • 0026898173 scopus 로고
    • Some properties of the generalized time frequency representation with cone shaped kernel
    • July
    • S. Oh and R. J. Marks, II, “Some properties of the generalized time frequency representation with cone shaped kernel,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 40, July 1992.
    • (1992) IEEE Trans. Acoust., Speech, Signal Processing , vol.40
    • Oh, S.1    Marks, R.J.2
  • 12
    • 0001263852 scopus 로고
    • Finding the common point of convex sets by the method of successive projections
    • L. M. Bregman, “Finding the common point of convex sets by the method of successive projections,” Dokl. Akad. Nauk. USSR, vol. 162, no. 3, pp. 487–490, 1965.
    • (1965) Dokl. Akad. Nauk. USSR , vol.162 , Issue.3 , pp. 487-490
    • Bregman, L.M.1
  • 13
    • 33845708830 scopus 로고
    • The method of projections for finding the common point of convex sets
    • L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of projections for finding the common point of convex sets,” USSR Comput. Math. Phys., vol. 7, no. 6, pp. 1–24, 1967.
    • (1967) USSR Comput. Math. Phys , vol.7 , Issue.6 , pp. 1-24
    • Gubin, L.G.1    Polyak, B.T.2    Raik, E.V.3
  • 14
    • 0020191832 scopus 로고
    • Image restoration by method of convex set projections: Part I—Theory
    • D. C. Youla and H. Webb, “Image restoration by method of convex set projections: Part I—Theory,” IEEE Trans. Med. Imaging, vol. MI-1, pp. 81–94, 1982.
    • (1982) IEEE Trans. Med. Imaging , vol.MI-1 , pp. 81-94
    • Youla, D.C.1    Webb, H.2
  • 15
    • 0020191820 scopus 로고
    • Image restoration by method of convex set projections: Part II—Applications and numerical results
    • M. I. Sezan and H. Stark, “Image restoration by method of convex set projections: Part II—Applications and numerical results,” IEEE Trans. Med. Imaging, vol. MI-1, pp. 95–101, 1982.
    • (1982) IEEE Trans. Med. Imaging , vol.MI-1 , pp. 95-101
    • Sezan, M.I.1    Stark, H.2
  • 16
    • 0010353147 scopus 로고
    • Iterative and one-step reconstruction from nonuniform samples by convex projections
    • S. J. Yen and H. Stark, “Iterative and one-step reconstruction from nonuniform samples by convex projections,” J. Opt. Soc. Amer. A, vol. 7, pp. 491-499, 1990.
    • (1990) J. Opt. Soc. Amer. A , vol.7 , pp. 491-499
    • Yen, S.J.1    Stark, H.2
  • 18
    • 84975557427 scopus 로고
    • A class of continuous level associative memory neural nets
    • R. J. Marks, II, “A class of continuous level associative memory neural nets,” Appl. Opt., vol. 26, pp. 2005–2009, 1987.
    • (1987) Appl. Opt , vol.26 , pp. 2005-2009
    • Marks, R.J.1
  • 19
    • 34250804335 scopus 로고
    • Alternating projection neural networks
    • R. J. Marks, II, S. Oh, and L. E. Atlas, “Alternating projection neural networks,” IEEE Trans. Circuits Syst., vol. 36, pp. 846–857, 1989.
    • (1989) IEEE Trans. Circuits Syst , vol.36 , pp. 846-857
    • Marks, R.J.1    Oh, S.2    Atlas, L.E.3
  • 20
    • 0022091196 scopus 로고
    • Signal synthesis in the presence of an inconsistent set of constraints
    • M. H. Goldburg and R. J. Marks, II, “Signal synthesis in the presence of an inconsistent set of constraints,” IEEE Trans. Circuits Syst., vol. CAS-32, 647–663, 1985.
    • (1985) IEEE Trans. Circuits Syst , vol.CAS-32 , pp. 647-663
    • Goldburg, M.H.1    Marks, R.J.2
  • 22
    • 0022705171 scopus 로고
    • Extensions of a result on the synthesis of signals in the presence of inconsistent constraints
    • D. C. Youla and V. Velasco, “Extensions of a result on the synthesis of signals in the presence of inconsistent constraints,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 465–468, 1986.
    • (1986) IEEE Trans. Circuits Syst , vol.CAS-33 , pp. 465-468
    • Youla, D.C.1    Velasco, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.