-
1
-
-
0003231932
-
Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards
-
M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards, Appl. Math. Series, vol. AMS 55, 1968.
-
(1968)
Appl. Math. Series
, vol.AMS
-
-
Abramowitz, M.1
Stegun, L.A.2
-
2
-
-
0000043254
-
Analyse multiresolution des signaux aléatoires
-
A. Cohen, J. Froment, and J. Istas, “Analyse multiresolution des signaux aléatoires,” C.R. Acad. Sci. Paris, vol. 312, ser. I, pp. 567-570, 1991.
-
(1991)
C.R. Acad. Sci. Paris
, vol.312
, pp. 567-570
-
-
Cohen, A.1
Froment, J.2
Istas, J.3
-
4
-
-
0026727407
-
Image compression through wavelet transform coding
-
Mar.
-
R. A. Devore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inform. Theory, vol. 38, pp. 719-746, Mar. 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 719-746
-
-
Devore, R.A.1
Jawerth, B.2
Lucier, B.J.3
-
5
-
-
30244517368
-
Extending wavelet decompositions to random processes with applications to periodically correlated processes
-
Aug.
-
M. J. Genossar, M. Goldburg, H. Lev-Ari, and T. Kailath, “Extending wavelet decompositions to random processes with applications to periodically correlated processes,” Tech. Rep. 91-GGLK-1, Inform. Syst. Lab., Stanford Univ., Stanford, CA, Aug. 1991.
-
(1991)
Tech. Rep. 91-GGLK-1
-
-
Genossar, M.J.1
Goldburg, M.2
Lev-Ari, H.3
Kailath, T.4
-
6
-
-
0003492031
-
Wavelet transforms and filter banks
-
R. A. Gopinath and C. S. Burrus, “Wavelet transforms and filter banks,” in Wavelets: A Tutorial in Theory and Applications, C. K. Chui, Ed. Boston, MA: Academic, 1992, pp. 603-654.
-
(1992)
Wavelets: A Tutorial in Theory and Applications
, pp. 603-654
-
-
Gopinath, R.A.1
Burrus, C.S.2
-
7
-
-
77953562862
-
Approximate Calculation of Integrals
-
V. I. Krylov, Approximate Calculation of Integrals. New York: Macmillan, 1962.
-
(1962)
New York: Macmillan
-
-
Krylov, V.I.1
-
8
-
-
0024700097
-
A theory of multiresolution decomposition: The wavelet representation
-
July
-
S. G. Mallat, “A theory of multiresolution decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.
-
(1989)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
9
-
-
84966210236
-
Multiresolution approximations and wavelet orthonormal bases of L2(R)
-
Sept.
-
—, “Multiresolution approximations and wavelet orthonormal bases of L2(R),” Trans. Amer. Math. Soc., vol. 315, pp. 69-87, Sept. 1989.
-
(1989)
Trans. Amer. Math. Soc.
, vol.315
, pp. 69-87
-
-
-
10
-
-
84946244935
-
Convergence properties of wavelet series expansions of fractional Brownian motion
-
Nov.
-
E. Masiy, “Convergence properties of wavelet series expansions of fractional Brownian motion,” submitted for publication, Nov. 1992.
-
(1992)
submitted for publication
-
-
Masiy, E.1
-
11
-
-
0004180195
-
Ondelettes et Opérateurs I, Ondelettes
-
Wavelets and Operators. Cambridge, England: Cambridge Univ. Press Paris, France: Hermann
-
Y. Meyer, Ondelettes et Opérateurs I, Ondelettes. Paris, France: Hermann, 1990; Wavelets and Operators. Cambridge, England: Cambridge Univ. Press, 1992.
-
(1992)
-
-
Meyer, Y.1
-
13
-
-
0026727406
-
On the optimal choice of a wavelet for signal representation
-
Mar.
-
A. H. Tewfik, D. Sinha, and P. Jorgensen, “On the optimal choice of a wavelet for signal representation,” IEEE Trans. Inform. Theory, vol. 38, pp. 747-765, Mar. 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 747-765
-
-
Tewfik, A.H.1
Sinha, D.2
Jorgensen, P.3
-
14
-
-
0027271422
-
Wavelet decomposition of harmonizable random processes
-
Jan.
-
P. W. Wong, “Wavelet decomposition of harmonizable random processes,” IEEE Trans. Inform. Theory, vol. 39, pp. 7-18, Jan. 1993.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 7-18
-
-
Wong, P.W.1
|