-
1
-
-
0019067203
-
The Wigner distribution—A tool for time-frequency signal analysis—Part II: Discrete time signals
-
T. A. C. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—A tool for time-frequency signal analysis—Part II: Discrete time signals,” Philips J. Res., vol. 35, pp. 276–300, 1980.
-
(1980)
Philips J. Res
, vol.35
, pp. 276-300
-
-
Claasen, T.A.C.1
Mecklenbrauker, W.F.G.2
-
2
-
-
0024705330
-
Time-frequency distributions—A review
-
July
-
L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE, vol 77. no.7,pp.941-981,July 1989.
-
(1989)
Proc. IEEE
, vol.77
, Issue.7
, pp. 941-981
-
-
Cohen, L.1
-
3
-
-
0022214129
-
Wigner-Ville spectral analysis of nonstationary processes
-
Dec.
-
W. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, no. 6, pp. 1461–1470, Dec. 1985.
-
(1985)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.33
, Issue.6
, pp. 1461-1470
-
-
Martin, W.1
Flandrin, P.2
-
4
-
-
77957134949
-
Time-frequency spectrum analysis and estimation for nonstationary random processes
-
B. Boashash, Ed. Melbourne,Australia: Longman Cheshire ch. 9.
-
M. Amin, “Time-frequency spectrum analysis and estimation for nonstationary random processes,” in Methods and Applications of Time-Frequency Signal Analysis, B. Boashash, Ed. Melbourne, Australia: Longman Cheshire, 1992, ch. 9.
-
(1992)
Methods and Applications of Time-Frequency Signal Analysis
-
-
Amin, M.1
-
5
-
-
0025463449
-
The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals
-
II July
-
Y. Zhao, L. Atlas, and R. Marks II, “The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 7, pp. 1084–1091, July 1990.
-
(1990)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.38
, Issue.7
, pp. 1084-1091
-
-
Zhao, Y.1
Atlas, L.2
Marks, R.3
-
6
-
-
0024681555
-
Improved time-frequency representation of multicomponent signals using exponential kernels
-
June
-
H. I. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 6, pp. 862–871, June 1989.
-
(1989)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.37
, Issue.6
, pp. 862-871
-
-
Choi, H.I.1
Williams, W.J.2
-
7
-
-
0026398595
-
A radially Gaussian, signal dependent time-frequency representation
-
(Toronto, Ontario, Canada), May
-
R. Baraniuk and D. Jones, “A radially Gaussian, signal dependent time-frequency representation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (Toronto, Ontario, Canada), May 1991, 3181–3184.
-
(1991)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 3181-3184
-
-
Baraniuk, R.1
Jones, D.2
-
8
-
-
33747635427
-
Time-varying spectrum estimation via multidimensional filter representation
-
(San Diego, CA),Aug.
-
M. Amin and M. Schiavoni, “Time-varying spectrum estimation via multidimensional filter representation,” in Proc. SPIE Advanced Algorithms, Architectures for Signal Processing (San Diego, CA), Aug. 1989.
-
(1989)
Proc. SPIE Advanced Algorithms, Architectures for Signal Processing
-
-
Amin, M.1
Schiavoni, M.2
-
9
-
-
0026104639
-
Transition kernels for bilinear time-frequency distributions
-
Feb.
-
L. White, “Transition kernels for bilinear time-frequency distributions,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 39, no. 2, pp. 542–544, Feb. 1991.
-
(1991)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.39
, Issue.2
, pp. 542-544
-
-
White, L.1
-
10
-
-
84941518552
-
Performance comparison of Wigner-Ville spectrum estimators using least squares approximation of kernels
-
(Gold Coast,Australia)
-
M. Amin, “Performance comparison of Wigner-Ville spectrum estimators using least squares approximation of kernels,” in Proc. ISSPA, vol. 2 (Gold Coast, Australia), 1990.
-
(1990)
Proc. ISSPA
, vol.2
-
-
Amin, M.1
-
11
-
-
84905278234
-
Reduced interference time-frequency distributions
-
B. Boashash, Ed. Melbourne,Australia: Longman Cheshire ch. 3.
-
W. Williams and J. Jeong, “Reduced interference time-frequency distributions,” in Methods and Applications of Time-Frequency Signal Analysis, B. Boashash, Ed. Melbourne, Australia: Longman Cheshire, 1992, ch. 3.
-
(1992)
Methods and Applications of Time-Frequency Signal Analysis
-
-
Williams, W.1
Jeong, J.2
-
12
-
-
4243421563
-
Signal processing studies
-
Tech. Rep., NUSG, New London, CT
-
A. H. Nuttall, “Signal processing studies,” Tech. Rep., NUSG, New London, CT, 1989.
-
-
-
Nuttall, A.H.1
-
13
-
-
0004236492
-
-
Baltimore, MD: The Johns Hopkins University Press Ch. 6.
-
G. H, Golub and F. F. Van Loan, Matrix Computations. Baltimore, MD: The Johns Hopkins University Press, 1983, Ch. 6.
-
(1983)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, F.F.2
-
14
-
-
0027229739
-
Deterministic exponential modeling techniques for high spectral resolution time-frequency distributions
-
(Minneapolis, MN),Apr.
-
M. G. Amin and W. J. Williams, “Deterministic exponential modeling techniques for high spectral resolution time-frequency distributions,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (Minneapolis, MN), Apr. 1993.
-
(1993)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
-
-
Amin, M.G.1
Williams, W.J.2
-
17
-
-
0025591232
-
High Temporal Resolution Estimators Through Reduced Rank Periodograms
-
M. G. Amin, “High temporal resolution estimators through reduced rank periodograms,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig. Processing, vol. 5, 1990, pp. 2471–2474.
-
(1990)
Proc. IEEE Int. Conf. Acoust., Speech, Sig. Processing
, vol.5
, pp. 2471-2474
-
-
Amin, M.G.1
|