메뉴 건너뛰기




Volumn 5, Issue 3, 1994, Pages 392-408

Invariant Image Classification using Triple-Correlation-Based Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER ARCHITECTURE; CORRELATION METHODS; IMAGE ANALYSIS; INVARIANCE; MATHEMATICAL MODELS; PATTERN RECOGNITION; SIGNAL DISTORTION;

EID: 0028430458     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.286911     Document Type: Article
Times cited : (37)

References (35)
  • 1
    • 84956090878 scopus 로고
    • A neural network for the retrieval of superimposed connection patterns
    • E. Bienestock and C. A. Von der Malsburg. “A neural network for the retrieval of superimposed connection patterns,” Europhysics Letters, vol. 3, pp. 1243-1249, 1987.
    • (1987) Europhysics Letters , vol.3 , pp. 1243-1249
    • Bienestock, E.1    Von der Malsburg, C.A.2
  • 2
    • 0026387206 scopus 로고
    • Shape discrimination using invariant features defined from higher-order spectra
    • Toronto, Canada, May 14-18
    • V. Chandran, and S. Elgar, “Shape discrimination using invariant features defined from higher-order spectra,” in Proc. of Intl. Conf. on Acoustics Speech and Signal Processing, vol. 5, Toronto, Canada, May 14-18, 1991, pp. 3105-3109.
    • (1991) Proc. of Intl. Conf. on Acoustics Speech and Signal Processing , vol.5 , pp. 3105-3109
    • Chandran, V.1    Elgar, S.2
  • 3
    • 84978416518 scopus 로고
    • Position, rotation, and scale invariant recognition of images using higher-order spectra
    • San Fransisco, CA, March
    • V. Chandran, and S. Elgar, “Position, rotation, and scale invariant recognition of images using higher-order spectra,” in Proc. of Intl. Conf. on Acoustics Speech and Signal Processing, vol. 5, San Fransisco, CA, March 1992, pp. 213-216.
    • (1992) Proc. of Intl. Conf. on Acoustics Speech and Signal Processing , vol.5 , pp. 213-216
    • Chandran, V.1    Elgar, S.2
  • 4
    • 0000473247 scopus 로고
    • A Backpropagation algorithm with optimal use of the hidden units
    • D. Tourentry, Ed. Palo Alto, CA: Morgan Kaufman
    • Y. Chauvin, “A Backpropagation algorithm with optimal use of the hidden units,” in Advances in Neural Information Processing Systems I, D. Tourentry, Ed. Palo Alto, CA: Morgan Kaufman, 1989.
    • (1989) Advances in Neural Information Processing Systems I
    • Chauvin, Y.1
  • 5
    • 0345916870 scopus 로고
    • Ergodicity and asymptotic normality for cumulant estimators of nonstationary signals
    • The Johns Hopkins Univ., Baltimore, March
    • A. V. Dandawate and G. B. Giannakis, “Ergodicity and asymptotic normality for cumulant estimators of nonstationary signals,” Proc. of 25th Conf. on Info. Sciences and Systems, The Johns Hopkins Univ., Baltimore, March 1991, pp. 976-983.
    • (1991) Proc. of 25th Conf. on Info. Sciences and Systems , pp. 976-983
    • Dandawate, A.V.1    Giannakis, G.B.2
  • 6
    • 0024767889 scopus 로고
    • Handwritten digit recognition: Applications of network chips and automatic learning
    • J. Denker et al., “Handwritten digit recognition: Applications of network chips and automatic learning,” IEEE Communications Magazine, pp. 41-46, 1989.
    • (1989) IEEE Communications Magazine , pp. 41-46
    • Denker, J.1
  • 8
    • 0020970740 scopus 로고
    • Neocognitron: A neural model for a mechanism of visual pattern recognition
    • K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural model for a mechanism of visual pattern recognition,” IEEE Trans, on Sys. Man and Cyh., vol. 13, no. 5, pp. 826-834, 1983.
    • (1983) IEEE Trans, on Sys. Man and Cyh. , vol.13 , Issue.5 , pp. 826-834
    • Fukushima, K.1    Miyake, S.2    Ito, T.3
  • 9
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual pattern recognition,” Neural Networks, vol. 1, pp. 119-130, 1988.
    • (1988) Neural Networks , vol.1 , pp. 119-130
    • Fukushima, K.1
  • 11
    • 0026836633 scopus 로고
    • A unifying maximum-likelihood view of cumulant and polyspectral measures for non-Gaussian signal classification and estimation
    • G. B. Giannakis, and M. K. Tsatsanis, “A unifying maximum-likelihood view of cumulant and polyspectral measures for non-Gaussian signal classification and estimation,” IEEE Trans, on Information Theory, vol. 38, pp. 386-406, 1992.
    • (1992) IEEE Trans, on Information Theory , vol.38 , pp. 386-406
    • Giannakis, G.B.1    Tsatsanis, M.K.2
  • 12
    • 0023513717 scopus 로고
    • Learning, invariance and generalization in higher-order neural networks
    • G. L. Giles and T. Maxwell, “Learning, invariance and generalization in higher-order neural networks,” Applied Optics, vol. 26, 1987.
    • (1987) Applied Optics , vol.26
    • Giles, G.L.1    Maxwell, T.2
  • 14
    • 0000991092 scopus 로고
    • Comparing biases for minimal network construction with Backpropagation
    • D. Tourentry, Ed. Palo Alto, CA: Morgan Kaufman
    • S. J. Hanson, “Comparing biases for minimal network construction with Backpropagation,” in Advances in Neural Information Processing Systems /, D. Tourentry, Ed. Palo Alto, CA: Morgan Kaufman, 1989.
    • (1989) Advances in Neural Information Processing Systems
    • Hanson, S.J.1
  • 15
    • 0020113074 scopus 로고
    • The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform
    • M. H. Hayes, “The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform,” IEEE Trans, on Acoustics, Speech and Signal Processing, vol. 30, no. 2, pp. 140-154, 1982.
    • (1982) IEEE Trans, on Acoustics, Speech and Signal Processing , vol.30 , Issue.2 , pp. 140-154
    • Hayes, M.H.1
  • 16
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Networks, vol. 1, no. 4, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4
    • Jacobs, R.1
  • 17
    • 0025446873 scopus 로고
    • Classification of invariant image representations using a neural network
    • A. Khotanzad and J. H. Lu, “Classification of invariant image representations using a neural network,” IEEE Trans, on ASSP. vol. 38, pp. 1028-1038, 1990.
    • (1990) IEEE Trans, on ASSP. , vol.38 , pp. 1028-1038
    • Khotanzad, A.1    Lu, J.H.2
  • 18
    • 0024715766 scopus 로고
    • An adaptive least squares algorithm for the efficient training of artificial neural networks
    • S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for the efficient training of artificial neural networks,” IEEE Trans, on Circuits and Systems, vol. 36, pp. 1092-1101, 1989.
    • (1989) IEEE Trans, on Circuits and Systems , vol.36 , pp. 1092-1101
    • Kollias, S.1    Anastassiou, D.2
  • 20
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • Switzerland: North Holland
    • Y. LeCun, “Generalization and network design strategies,” in Connectionism in Perspective. Switzerland: North Holland, pp. 143-155, 1989.
    • (1989) Connectionism in Perspective , pp. 143-155
    • LeCun, Y.1
  • 22
    • 0023829116 scopus 로고
    • Pattern recognition by labelled graph matching
    • C. Von der Malsburg, “Pattern recognition by labelled graph matching,” Neural Networks, vol. 1, pp. 141-148, 1988
    • (1988) Neural Networks , vol.1 , pp. 141-148
    • Von der Malsburg, C.1
  • 23
    • 0026119462 scopus 로고
    • Tutorial in higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications
    • J. M. Mendel, “Tutorial in higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proc. IEEE, vol. 79, pp. 278-305, 1991.
    • (1991) Proc. IEEE , vol.79 , pp. 278-305
    • Mendel, J.M.1
  • 24
    • 0019569248 scopus 로고
    • Importance of phase in signals
    • A. V. Oppenheim, and J. L. Lim, “Importance of phase in signals,” Proc. IEEE, vol. 69, pp. 529-541, 1981.
    • (1981) Proc. IEEE , vol.69 , pp. 529-541
    • Oppenheim, A.V.1    Lim, J.L.2
  • 26
    • 0003663467 scopus 로고
    • Third Edition, McGraw-Hill International Editions, Electrical & Electronic Engineering Series
    • A. Papoulis, Probability, Random Variables, and Stochastic Processes. Third Edition, McGraw-Hill International Editions, Electrical & Electronic Engineering Series, 1991, pp. 212-213.
    • (1991) Probability, Random Variables, and Stochastic Processes , pp. 212-213
    • Papoulis, A.1
  • 27
    • 0024903874 scopus 로고
    • Rapid training of higher-order neural networks for invariant pattern recognition
    • Washington, D.C., June
    • M. B. Reid, L. Spirkovska, and E. Ochoa, “Rapid training of higher-order neural networks for invariant pattern recognition,” in Proc. Joint Int. Conf. on Neural Networks, Washington, D.C., June 1989.
    • (1989) Proc. Joint Int. Conf. on Neural Networks
    • Reid, M.B.1    Spirkovska, L.2    Ochoa, E.3
  • 28
    • 0343798143 scopus 로고
    • Simultaneous position, scale, and rotation invariant pattern classification using third-order neural networks
    • July
    • M. B. Reid, L. Spirkovska, and E. Ochoa, “Simultaneous position, scale, and rotation invariant pattern classification using third-order neural networks,” The International Journal of Neural Networks, vol. 1, no. 3, July 1989.
    • (1989) The International Journal of Neural Networks , vol.1 , Issue.3
    • Reid, M.B.1    Spirkovska, L.2    Ochoa, E.3
  • 30
    • 0024929688 scopus 로고
    • Object and texture classification using mathced filtering and higher-order statistics
    • Monterey, CA, September
    • M. K. Tsatsanis and G. B. Giannakis, “Object and texture classification using mathced filtering and higher-order statistics,” Proc. of 6th Workshop on Multidimensional Signal Processing, Monterey, CA, September 1989, pp. 32-33.
    • (1989) Proc. of 6th Workshop on Multidimensional Signal Processing , pp. 32-33
    • Tsatsanis, M.K.1    Giannakis, G.B.2
  • 33
    • 0023982347 scopus 로고
    • Neural nets for adaptive filtering and adaptive pattern recognition
    • B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern recognition,” IEEE Computer, vol. 21, no. 3, pp. 25-39, 1988.
    • (1988) IEEE Computer , vol.21 , Issue.3 , pp. 25-39
    • Widrow, B.1    Winter, R.2
  • 34
    • 0021439544 scopus 로고
    • Significance of group delay functions in signal reconstruction from spectral magnitude or phase
    • B. Yegnanarayana, D. K. Saikia, and T. R. Krishnan, “Significance of group delay functions in signal reconstruction from spectral magnitude or phase,” IEEE Trans, on ASSP, vol. 32, no. 3, pp. 610-622, 1984.
    • (1984) IEEE Trans, on ASSP , vol.32 , Issue.3 , pp. 610-622
    • Yegnanarayana, B.1    Saikia, D.K.2    Krishnan, T.R.3
  • 35
    • 84941515728 scopus 로고
    • Applications of Neural Networks to Industrial Pattern Recognition Problems
    • ANNIE
    • ANNIE, “Applications of Neural Networks to Industrial Pattern Recognition Problems,” Esprit Project 2092 Handbook, 1991.
    • (1991) Esprit Project 2092 Handbook


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.