메뉴 건너뛰기




Volumn 5, Issue 3, 1994, Pages 342-353

Regression Modeling in Back-propagation and Projection Pursuit Learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; ITERATIVE METHODS; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; POLYNOMIALS; REGRESSION ANALYSIS; STATISTICAL METHODS; VECTORS;

EID: 0028428443     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.286906     Document Type: Article
Times cited : (218)

References (34)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akademia Kiado, Budapest
    • H. Akaike, “Information theory and an extension of the maximum likelihood principle,” 2nd Int' I Symposium on Information Theory, Akademia Kiado, Budapest, pp. 267-281, 1973.
    • (1973) 2nd Int' I Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0002167090 scopus 로고
    • Predicted squared error: A criterion for automatic model selection
    • S. Farlow and Marcel Dekker, Eds., chap. 4
    • A. R. Barron, “Predicted squared error: A criterion for automatic model selection,” Self-Organizing Methods in Modeling, S. Farlow and Marcel Dekker, Eds. 1984, chap. 4.
    • (1984) Self-Organizing Methods in Modeling
    • Barron, A.R.1
  • 5
    • 0002531537 scopus 로고
    • Projection-based approximation and a duality with kernel methods
    • D. L. Donoho and I. M. Johnstone, “Projection-based approximation and a duality with kernel methods,” The Annals of Statistics, vol. 17, no. 1, pp. 58-106, 1989.
    • (1989) The Annals of Statistics , vol.17 , Issue.1 , pp. 58-106
    • Donoho, D.L.1    Johnstone, I.M.2
  • 7
    • 0003906335 scopus 로고
    • A variable span smoother
    • Department of Statistics, Stanford University, Technical Report no. 5, November
    • J. H. Friedman, “A variable span smoother,” Department of Statistics, Stanford University, Technical Report no. 5, November 1984.
    • (1984)
    • Friedman, J.H.1
  • 8
    • 0008637313 scopus 로고
    • Classification and multiple regression through projection pursuit
    • Department of Statistics, Stanford University, Technical Report no. 12, January
    • J. H. Friedman, “Classification and multiple regression through projection pursuit,” Department of Statistics, Stanford University, Technical Report no. 12, January 1985.
    • (1985)
    • Friedman, J.H.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1
  • 11
  • 12
    • 0000263797 scopus 로고
    • Projection pursuit
    • P. J. Huber, “Projection pursuit,” The Annals of Statistics, vol. 13, no. 2, 435-475. 1985.
    • (1985) The Annals of Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 15
  • 18
    • 0000552128 scopus 로고
    • On polynomial-based projection indices for exploratory projection pursuit
    • P. Hall, “On polynomial-based projection indices for exploratory projection pursuit,” The Annals of Statistics, vol. 17, no. 2, pp. 589-605, 1989.
    • (1989) The Annals of Statistics , vol.17 , Issue.2 , pp. 589-605
    • Hall, P.1
  • 19
    • 0000523636 scopus 로고
    • On a conjecture of Huber concerning the convergence of projection pursuit regression
    • L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression,” The Annals of Statistics, vol. 15, no. 2, pp. 880-882, 1987.
    • (1987) The Annals of Statistics , vol.15 , Issue.2 , pp. 880-882
    • Jones, L.K.1
  • 21
    • 0024715766 scopus 로고
    • An adaptive least squares algorithm for the efficient training of artificial neural networks
    • S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for the efficient training of artificial neural networks,” IEEE Trans. Circuits and Systems, vol. 36, no. 8, pp. 1092-1101, 1989.
    • (1989) IEEE Trans. Circuits and Systems , vol.36 , Issue.8 , pp. 1092-1101
    • Kollias, S.1    Anastassiou, D.2
  • 23
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: a numerical method
    • J. B. Kruskal, “Nonmetric multidimensional scaling: a numerical method,” Psychometrika vol. 29, pp. 115-129. 1964.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 25
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Computations, vol. 1, no. 1, pp. 281-294, 1989.
    • (1989) Neural Computations , vol.1 , Issue.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 27
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, “A universal prior for integers and estimation by minimum description length,” Ann. of Stat., vol. 11, no. 2, pp. 416-431, 1983.
    • (1983) Ann. of Stat. , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 30
    • 0010480416 scopus 로고
    • Recent advances in numerical techniques for large-scale optimization
    • E. W. T. Miller, R. Sutton, and P. J. Werbos, Eds. Cambridge. MA: MIT Press
    • D. F. Shannon, “Recent advances in numerical techniques for large-scale optimization,” in Neural Networks for Robotics and Control, E. W. T. Miller, R. Sutton, and P. J. Werbos, Eds. Cambridge. MA: MIT Press 1990.
    • (1990) Neural Networks for Robotics and Control
    • Shannon, D.F.1
  • 31
    • 84941507250 scopus 로고    scopus 로고
    • Statistical Science Inc., (Version 3.0), Seattle, WA
    • Statistical Science Inc., S-Plus Users Manual, (Version 3.0), Seattle, WA.
    • S-Plus Users Manual
  • 32
    • 0023541050 scopus 로고
    • Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization
    • San Diego, CA. June
    • R. L. Watrous, “Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization.” in Proc. 1987 IEEE Int. Conf. Neural Networks: vol. II San Diego, CA. June 1987, pp. 619-627.
    • (1987) Proc. 1987 IEEE Int. Conf. Neural Networks , vol.II , pp. 619-627
    • Watrous, R.L.1
  • 34
    • 0000243355 scopus 로고
    • Learning in artificial networks: A statistical perspective
    • H. White, “Learning in artificial networks: A statistical perspective.” Neural Computation, vol. 1, no. 4, pp. 425-169, 1989.
    • (1989) Neural Computation , vol.1 , Issue.4 , pp. 425
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.