-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Akademia Kiado, Budapest
-
H. Akaike, “Information theory and an extension of the maximum likelihood principle,” 2nd Int' I Symposium on Information Theory, Akademia Kiado, Budapest, pp. 267-281, 1973.
-
(1973)
2nd Int' I Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0002167090
-
Predicted squared error: A criterion for automatic model selection
-
S. Farlow and Marcel Dekker, Eds., chap. 4
-
A. R. Barron, “Predicted squared error: A criterion for automatic model selection,” Self-Organizing Methods in Modeling, S. Farlow and Marcel Dekker, Eds. 1984, chap. 4.
-
(1984)
Self-Organizing Methods in Modeling
-
-
Barron, A.R.1
-
5
-
-
0002531537
-
Projection-based approximation and a duality with kernel methods
-
D. L. Donoho and I. M. Johnstone, “Projection-based approximation and a duality with kernel methods,” The Annals of Statistics, vol. 17, no. 1, pp. 58-106, 1989.
-
(1989)
The Annals of Statistics
, vol.17
, Issue.1
, pp. 58-106
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
6
-
-
84950941772
-
Projection pursuit regression
-
J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” Journal of the American Statistical Association, vol. 76, no. 376, pp. 817-823, 1981.
-
(1981)
Journal of the American Statistical Association
, vol.76
, Issue.376
, pp. 817-823
-
-
Friedman, J.H.1
Stuetzle, W.2
-
7
-
-
0003906335
-
A variable span smoother
-
Department of Statistics, Stanford University, Technical Report no. 5, November
-
J. H. Friedman, “A variable span smoother,” Department of Statistics, Stanford University, Technical Report no. 5, November 1984.
-
(1984)
-
-
Friedman, J.H.1
-
8
-
-
0008637313
-
Classification and multiple regression through projection pursuit
-
Department of Statistics, Stanford University, Technical Report no. 12, January
-
J. H. Friedman, “Classification and multiple regression through projection pursuit,” Department of Statistics, Stanford University, Technical Report no. 12, January 1985.
-
(1985)
-
-
Friedman, J.H.1
-
10
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
-
12
-
-
0000263797
-
Projection pursuit
-
P. J. Huber, “Projection pursuit,” The Annals of Statistics, vol. 13, no. 2, 435-475. 1985.
-
(1985)
The Annals of Statistics
, vol.13
, Issue.2
, pp. 435-475
-
-
Huber, P.J.1
-
13
-
-
0024915502
-
A systolic neural network architecture for hidden Markov model
-
J. N. Hwang, J. A. Vlontzos, and S. Y. Kung, “A systolic neural network architecture for hidden Markov model,” IEEE Trans, on Acoustics, Speech, and Signal Processing, vol. 37. no. 12, pp. 1967-1979, 1989.
-
(1989)
IEEE Trans, on Acoustics, Speech, and Signal Processing
, vol.37
, Issue.12
, pp. 1967-1979
-
-
Hwang, J.N.1
Vlontzos, J.A.2
Kung, S.Y.3
-
14
-
-
0026372296
-
From nonlinear optimization to neural network learning
-
Pacific Grove, CA, November
-
J. N. Hwang and P. S. Lewis, “From nonlinear optimization to neural network learning,” in Proc. 24th Asilomar Conf. on Signals. Systems. & Computers, Pacific Grove, CA, November 1990, pp. 985-989.
-
(1990)
Proc. 24th Asilomar Conf. on Signals. Systems. & Computers
, pp. 985-989
-
-
Hwang, J.N.1
Lewis, P.S.2
-
15
-
-
0026287725
-
The learning parsimony of projection pursuit and Backpropagation networks
-
Pacific Grove, CA, November
-
J. N. Hwang, H. Li, D. Martin, and J. Schimert, “The learning parsimony of projection pursuit and Backpropagation networks,” in 25th Asilomar Conf. on Signals, Systems. & Computers. Pacific Grove, CA, November 1991, pp. 491-495.
-
(1991)
25th Asilomar Conf. on Signals, Systems. & Computers.
, pp. 491-495
-
-
Hwang, J.N.1
Li, H.2
Martin, D.3
Schimert, J.4
-
16
-
-
5244288319
-
A comparison of projection pursuit and neural network regression modeling
-
Denver, CO. November
-
J. N. Hwang, H. Li, M. Maechler. D. Martin, and J. Schimert, “A comparison of projection pursuit and neural network regression modeling,” in Neural Information Processing Systems IV. Denver, CO. November 1991, pp. 1159-1166.
-
(1991)
Neural Information Processing Systems IV
, pp. 1159-1166
-
-
Hwang, J.N.1
Li, H.2
Maechler, M.3
Martin, D.4
Schimert, J.5
-
17
-
-
33747587436
-
Projection pursuit learning network for regression
-
J N. Hwang, H. Li, M. Maechler, D. Martin, and J. Schimert, “Projection pursuit learning network for regression,” Engineering Applic. Artif. Intell., New York: Pergamon Press Ltd., vol. 5, no. 3, pp. 193-204, 1992.
-
(1992)
Engineering Applic. Artif. Intell., New York: Pergamon Press Ltd.
, vol.5
, Issue.3
, pp. 193-204
-
-
Hwang, J.1
Li, H.2
Maechler, M.3
Martin, D.4
Schimert, J.5
-
18
-
-
0000552128
-
On polynomial-based projection indices for exploratory projection pursuit
-
P. Hall, “On polynomial-based projection indices for exploratory projection pursuit,” The Annals of Statistics, vol. 17, no. 2, pp. 589-605, 1989.
-
(1989)
The Annals of Statistics
, vol.17
, Issue.2
, pp. 589-605
-
-
Hall, P.1
-
19
-
-
0000523636
-
On a conjecture of Huber concerning the convergence of projection pursuit regression
-
L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression,” The Annals of Statistics, vol. 15, no. 2, pp. 880-882, 1987.
-
(1987)
The Annals of Statistics
, vol.15
, Issue.2
, pp. 880-882
-
-
Jones, L.K.1
-
20
-
-
0025550399
-
Function approximation and time series prediction with neural networks
-
R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, P. S. Lewis, and S. Qian, “Function approximation and time series prediction with neural networks,” in Proc. Int'l Joint Conf on Neural Networks, pp. I 649-665, 1990.
-
(1990)
Proc. Int'l Joint Conf on Neural Networks
, pp. I 649-I 665
-
-
Jones, R.D.1
Lee, Y.C.2
Barnes, C.W.3
Flake, G.W.4
Lee, K.5
Lewis, P.S.6
Qian, S.7
-
21
-
-
0024715766
-
An adaptive least squares algorithm for the efficient training of artificial neural networks
-
S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for the efficient training of artificial neural networks,” IEEE Trans. Circuits and Systems, vol. 36, no. 8, pp. 1092-1101, 1989.
-
(1989)
IEEE Trans. Circuits and Systems
, vol.36
, Issue.8
, pp. 1092-1101
-
-
Kollias, S.1
Anastassiou, D.2
-
23
-
-
24944533365
-
Nonmetric multidimensional scaling: a numerical method
-
J. B. Kruskal, “Nonmetric multidimensional scaling: a numerical method,” Psychometrika vol. 29, pp. 115-129. 1964.
-
(1964)
Psychometrika
, vol.29
, pp. 115-129
-
-
Kruskal, J.B.1
-
24
-
-
0025541996
-
Projection pursuit learning networks for regression
-
Washington D.C., November
-
M. Maechler, D. Martin. J. Schimert, M. Csoppenszky and J. N. Hwang, “Projection pursuit learning networks for regression.” in Proc. 2nd Int'l Conf. Tools for Al, Washington D.C., November 1990, pp. 350-358.
-
(1990)
Proc. 2nd Int'l Conf. Tools for Al
, pp. 350-358
-
-
Maechler, M.1
Martin, D.2
Schimert, J.3
Csoppenszky, M.4
Hwang, J.N.5
-
25
-
-
0000672424
-
Fast learning in networks of locally tuned processing units
-
J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Computations, vol. 1, no. 1, pp. 281-294, 1989.
-
(1989)
Neural Computations
, vol.1
, Issue.1
, pp. 281-294
-
-
Moody, J.1
Darken, C.J.2
-
27
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
J. Rissanen, “A universal prior for integers and estimation by minimum description length,” Ann. of Stat., vol. 11, no. 2, pp. 416-431, 1983.
-
(1983)
Ann. of Stat.
, vol.11
, Issue.2
, pp. 416-431
-
-
Rissanen, J.1
-
29
-
-
0000646059
-
Learning internal representation by error propagation
-
D. E. Rumelhart and J. L. McClelland, Eds., Cambridge, MA: MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning internal representation by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Volume 1: Foundations D. E. Rumelhart and J. L. McClelland, Eds., Cambridge, MA: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Volume 1: Foundations
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
30
-
-
0010480416
-
Recent advances in numerical techniques for large-scale optimization
-
E. W. T. Miller, R. Sutton, and P. J. Werbos, Eds. Cambridge. MA: MIT Press
-
D. F. Shannon, “Recent advances in numerical techniques for large-scale optimization,” in Neural Networks for Robotics and Control, E. W. T. Miller, R. Sutton, and P. J. Werbos, Eds. Cambridge. MA: MIT Press 1990.
-
(1990)
Neural Networks for Robotics and Control
-
-
Shannon, D.F.1
-
31
-
-
84941507250
-
-
Statistical Science Inc., (Version 3.0), Seattle, WA
-
Statistical Science Inc., S-Plus Users Manual, (Version 3.0), Seattle, WA.
-
S-Plus Users Manual
-
-
-
32
-
-
0023541050
-
Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization
-
San Diego, CA. June
-
R. L. Watrous, “Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization.” in Proc. 1987 IEEE Int. Conf. Neural Networks: vol. II San Diego, CA. June 1987, pp. 619-627.
-
(1987)
Proc. 1987 IEEE Int. Conf. Neural Networks
, vol.II
, pp. 619-627
-
-
Watrous, R.L.1
-
34
-
-
0000243355
-
Learning in artificial networks: A statistical perspective
-
H. White, “Learning in artificial networks: A statistical perspective.” Neural Computation, vol. 1, no. 4, pp. 425-169, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 425
-
-
White, H.1
|