메뉴 건너뛰기




Volumn 5, Issue 3, 1994, Pages 467-479

A Robust Back Propagation Learning Algorithm for Function Approximation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; ERROR CORRECTION; FUNCTION EVALUATION; INTERPOLATION; ITERATIVE METHODS; LEARNING SYSTEMS; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; NEURAL NETWORKS;

EID: 0028428006     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.286917     Document Type: Article
Times cited : (266)

References (27)
  • 1
    • 0023978579 scopus 로고
    • Segmentation through variable-order surface fitting
    • Mar.
    • P. Besl and J. Jain, “Segmentation through variable-order surface fitting,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, no. 2, pp. 167-192, Mar. 1988.
    • (1988) IEEE Trans. Pattern Anal. Machine Intell. , vol.10 , Issue.2 , pp. 167-192
    • Besl, P.1    Jain, J.2
  • 2
    • 0002833740 scopus 로고
    • Function representation and approximation by neural networks
    • Ph.D. dissertation, Univ. Michigan, Ann Arbor
    • D. S. Chen, “Function representation and approximation by neural networks,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1991.
    • (1991)
    • Chen, D.S.1
  • 3
    • 0023292388 scopus 로고
    • Analysis of error in reconstruction of two-dimensional signals from irregularly spaced samples
    • D. S. Chen and J. P. Allebach, “Analysis of error in reconstruction of two-dimensional signals from irregularly spaced samples,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, no. 2, pp. 173-180, 1987.
    • (1987) IEEE Trans. Acoust. Speech, Signal Processing , vol.ASSP-35 , Issue.2 , pp. 173-180
    • Chen, D.S.1    Allebach, J.P.2
  • 4
    • 0001775806 scopus 로고
    • On linear functions of linear combinations
    • P. Diaconis and M. Shahshahani, “On linear functions of linear combinations,” SIAM J. Sci. Stat. Comput., vol. 5, no. 1, pp. 175-191, 1984.
    • (1984) SIAM J. Sci. Stat. Comput. , vol.5 , Issue.1 , pp. 175-191
    • Diaconis, P.1    Shahshahani, M.2
  • 5
    • 0002531537 scopus 로고
    • Projection-based approximation and a duality with kernel methods
    • D. L. Donoho and I. M. Johnstone, “Projection-based approximation and a duality with kernel methods,” Ann. Statist., vol. 17, no. 1, pp. 58-106, 1989.
    • (1989) Ann. Statist. , vol.17 , Issue.1 , pp. 58-106
    • Donoho, D.L.1    Johnstone, I.M.2
  • 6
    • 84964203940 scopus 로고
    • Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
    • B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy,” Statist. Sci., vol. 1, pp. 54-77, 1988.
    • (1988) Statist. Sci. , vol.1 , pp. 54-77
    • Efron, B.1    Tibshirani, R.2
  • 8
    • 0008637313 scopus 로고
    • Classification and multiple regression through projection pursuit
    • Dep. Statist., Standford Univ. and Stanford Linear Accelerator Center, Tech. Rep. LCS 12
    • J. H. Friedman, “Classification and multiple regression through projection pursuit,” Dep. Statist., Standford Univ. and Stanford Linear Accelerator Center, Tech. Rep. LCS 12, 1985.
    • (1985)
    • Friedman, J.H.1
  • 9
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • Cambridge, MA: MIT Press
    • E. J. Hartman, J. E. Keeler, and J. M. Kowalski, “Layered neural networks with Gaussian hidden units as universal approximations,” in Neural Computation, vol. 2. Cambridge, MA: MIT Press, 1990, pp. 210-215.
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.E.2    Kowalski, J.M.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0001316267 scopus 로고
    • The change-of-variance curve and optimal redescending M-estimators
    • F. R. Hampel, P. J. Rousseeuw, and E. Ronchetti, “The change-of-variance curve and optimal redescending M-estimators,” J. Amer. Statist. Assoc., vol. 76, no. 375, pp. 643-648, 1981.
    • (1981) J. Amer. Statist. Assoc. , vol.76 , Issue.375 , pp. 643-648
    • Hampel, F.R.1    Rousseeuw, P.J.2    Ronchetti, E.3
  • 13
    • 84950646761 scopus 로고
    • The influence curve and its role in robust estimation
    • F. R. Hampel, “The influence curve and its role in robust estimation,” J. Amer. Statist. Assoc., vol. 69, no. 346, pp. 383-393, 1974.
    • (1974) J. Amer. Statist. Assoc. , vol.69 , Issue.346 , pp. 383-393
    • Hampel, F.R.1
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netowrks. vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netowrks. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0000974760 scopus 로고
    • Generalizing smoothness constraints from discrete samples
    • C. Ji, R. R. Snapp, and D. Psaltis, “Generalizing smoothness constraints from discrete samples,” Neural Computation, vol. 2, pp. 188-197, 1990.
    • (1990) Neural Computation , vol.2 , pp. 188-197
    • Ji, C.1    Snapp, R.R.2    Psaltis, D.3
  • 17
    • 23944436740 scopus 로고
    • A theoretical framework for backpropagation
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds. June 17-26, San Mateo, CA: Morgan Kaufmann
    • Y. Le Cun, “A theoretical framework for backpropagation,” in Proc. 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. June 17-26, 1988. San Mateo, CA: Morgan Kaufmann, pp. 21-28.
    • (1988) Proc. 1988 Connectionist Models Summer School , pp. 21-28
    • Le Cun, Y.1
  • 18
    • 84941487731 scopus 로고
    • Some mathematical properties of three-layer perceptron-like neural nets
    • Warren, MI, Res. Memo 50-510
    • N. McKay. “Some mathematical properties of three-layer perceptron-like neural nets.” General Motors Research Labs. Warren, MI, Res. Memo 50-510, 1990.
    • (1990) General Motors Research Labs
    • McKay, N.1
  • 20
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, and F. Girosi, “Networks for approximation and learning,” Proc. IEEE. vol. 78, no. 9, pp. 1481-1497. 1990.
    • (1990) Proc. IEEE. , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 23
    • 84941526540 scopus 로고    scopus 로고
    • A two stage algorithm for discontinuity preserving surface reconstruction
    • to be published
    • S. Sinha and B. Schunck, “A two stage algorithm for discontinuity preserving surface reconstruction.” IEEE Trans. Pattern Anal. Machine Intell., to be published
    • IEEE Trans. Pattern Anal. Machine Intell.
    • Sinha, S.1    Schunck, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.