메뉴 건너뛰기




Volumn 42, Issue 5, 1994, Pages 1202-1217

Adaptive Principal Component EXtraction (APEX) and Applications

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; SIGNAL DETECTION; SIGNAL PROCESSING;

EID: 0028427087     PISSN: 1053587X     EISSN: 19410476     Source Type: Journal    
DOI: 10.1109/78.295198     Document Type: Article
Times cited : (151)

References (47)
  • 1
    • 0005545931 scopus 로고
    • A neural model for adaptive Karhunen Loève transformation (KLT)
    • II (Baltimore, MD) June
    • H. M. Abbas and M. M. Fahmy, “A neural model for adaptive Karhunen Loève transformation (KLT)” in Proc. IJCNN-92, vol. II (Baltimore, MD), June, 1992, pp. 975–980
    • (1992) Proc. IJCNN-92 , pp. 975-980
    • Abbas, H.M.1    Fahmy, M.M.2
  • 2
    • 0024774330 scopus 로고
    • Neural networks for principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik. “Neural networks for principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1989
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 3
    • 0026290237 scopus 로고
    • Principal component extraction using recursive least squares method
    • (Singapore)
    • S. Bannour and M. R. Azimi-Sadjadi. “Principal component extraction using recursive least squares method,” in Int. Joint Conf. Neural Networks (IJCNN) '91 (Singapore), 1991, pp. 2110–2115.
    • (1991) Int. Joint Conf. Neural Networks (IJCNN)’91 , pp. 2110-2115
    • Bannour, S.1    Azimi-Sadjadi, M.R.2
  • 4
    • 0020141256 scopus 로고
    • A measure of the tracking capability of recursive stochastic algorithms with constant gains
    • A. Benveniste and G. Ruget, “A measure of the tracking capability of recursive stochastic algorithms with constant gains,” IEEE Trans. Automat. Contr., vol. AC-27, no. 3, pp. 639–649, 1982
    • (1982) IEEE Trans. Automat. Contr , vol.AC-27 , Issue.3 , pp. 639-649
    • Benveniste, A.1    Ruget, G.2
  • 5
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp. “Auto-association by multilayer perceptrons and singular value decomposition.” Biolog. Cyber., vol. 59, pp. 291–294, 1988
    • (1988) Biolog. Cyber , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 6
    • 0026289342 scopus 로고
    • An alternative proof of convergence for Kung-Diamantaras APEX algorithm
    • B. H. Juang, S. Y. Kung and C. A. Kamm, New York: IEEE Press
    • H. Chen and R. Liu, “An alternative proof of convergence for Kung-Diamantaras APEX algorithm,” in B. H. Juang, S. Y. Kung and C. A. Kamm, Eds., Neural Networks for Signal Processing. New York: IEEE Press, 1991, pp. 40–49
    • (1991) Neural Networks for Signal Processing , pp. 40-49
    • Chen, H.1    Liu, R.2
  • 7
    • 0004197034 scopus 로고
    • E. F. Deprettere North Hohhand: Elsevier
    • SVD and Signal Processing, E. F. Deprettere, Ed. North Hohhand: Elsevier, 1988
    • (1988) SVD and Signal Processing
  • 8
    • 0010312236 scopus 로고
    • Principal component learning networks and applications
    • Ph.D. dissertation, Princeton, NJ
    • K. I. Diamantaras. “Principal component learning networks and applications,” Ph.D. dissertation, Princeton Univ., Princeton, NJ, 1992
    • (1992) Princeton Univ
    • Diamantaras, K.I.1
  • 9
    • 84941531416 scopus 로고    scopus 로고
    • Cross-correlation neural network models
    • to be published
    • K. I. Diamantaras and S. Y. Kung “Cross-correlation neural network models,” to be published
    • Diamantaras, K.I.1    Kung, S.Y.2
  • 10
    • 84941534023 scopus 로고    scopus 로고
    • Multilayer neural networks for reduced rank approximation
    • to be published
    • K. I. Diamantaras and S. Y. Kung. “Multilayer neural networks for reduced rank approximation,” to be published
    • Diamantaras, K.I.1    Kung, S.Y.2
  • 11
    • 0026401069 scopus 로고
    • An unsupervised neural model for oriented principal component extraction
    • (Toronto, Canada)
    • K. I. Diamantaras and S. Y. Kung “An unsupervised neural model for oriented principal component extraction,” in Proc. Int. Conf. Acoust., Speech, Signal Processing (Toronto, Canada), 1991, pp. 1049–1052
    • (1991) Proc. Int. Conf. Acoust., Speech, Signal Processing , pp. 1049-1052
    • Diamantaras, K.I.1    Kung, S.Y.2
  • 12
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • (Washington DC)
    • P. Foldiak. “Adaptive network for optimal linear feature extraction,” in Proc. Int. Joint Conf. Neural Networks (Washington DC), 1989, pp. I 401–1 406
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 401-406
    • Foldiak, P.1
  • 13
    • 0023979695 scopus 로고
    • Noncoherent detection of coherent lightwave signals corrupted by phase noise
    • Mar
    • G. J. Foschini, L. J. Greenstein, and G. Vannucci, “Noncoherent detection of coherent lightwave signals corrupted by phase noise,” IEEE Trans. Commun., vol. 36, no. 3, pp. 306–314, Mar. 1988
    • (1988) IEEE Trans. Commun , vol.36 , Issue.3 , pp. 306-314
    • Foschini, G.J.1    Greenstein, L.J.2    Vannucci, G.3
  • 14
    • 0022046043 scopus 로고
    • A proposed receiver structure for optimal communication systems that employ heterodyne detection and a semiconductor laser as a local oscillator
    • Apr
    • C. Georghiades and D. L. Snyder, “A proposed receiver structure for optimal communication systems that employ heterodyne detection and a semiconductor laser as a local oscillator,” IEEE Trans. Commun., vol. COM-33, no. 4, Apr. 1985
    • (1985) IEEE Trans. Commun , vol.COM-33 , Issue.4
    • Georghiades, C.1    Snyder, D.L.2
  • 15
    • 0004236492 scopus 로고    scopus 로고
    • Matrix computations
    • 2nd ed, Baltimore, MD: Johns Hopkins University Press
    • G. H. Golub and C. F. Van Loan, “Matrix computations,” 2nd ed. Baltimore, MD: Johns Hopkins University Press, 1989
    • Golub, G.H.1    Van Loan, C.F.2
  • 18
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling, “Analysis of a complex of statistical variables into principal components,” J. Educ. Psych., vol. 24, 498–520, 1933
    • (1933) J. Educ. Psych , vol.24 , pp. 498-520
    • Hotelling, H.1
  • 19
    • 0003409571 scopus 로고    scopus 로고
    • Fundamentals of digital image processing
    • Englewood Cliffs, NJ: Prentice-Hall
    • A. K. Jain, “Fundamentals of digital image processing,” Englewood Cliffs, NJ: Prentice-Hall, 1989
    • Jain, A.K.1
  • 20
    • 0002334592 scopus 로고
    • A new identification and model reduction algorithm via singular value decomposition
    • (Pacific Grove, CA) Nov
    • S. Y. Kung. “A new identification and model reduction algorithm via singular value decomposition,” in Proc. 12th Asilomar Conf. Circuits, Syst. Comput. (Pacific Grove, CA), Nov. 1978, pp. 705–714
    • (1978) Proc. 12th Asilomar Conf. Circuits, Syst. Comput , pp. 705-714
    • Kung, S.Y.1
  • 21
    • 0025594749 scopus 로고
    • Adaptive principal component analysis via an orthogonal learning network
    • (New Orleans, LA) May
    • S. Y. Kung “Adaptive principal component analysis via an orthogonal learning network,” in Proc. Int. Symp. Circuits, Syst. (New Orleans, LA), May, 1990, pp. 719–722
    • (1990) Proc. Int. Symp. Circuits, Syst , pp. 719-722
    • Kung, S.Y.1
  • 22
    • 0001502401 scopus 로고
    • State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem
    • S. Y. Kung K. S. Arun, and D. V. Bhaskar Rao, “State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem,” J. Opt. Soc. Am., vol. 73, 1983
    • (1983) J. Opt. Soc. Am , vol.73
    • Kung, S.Y.1    Arun, K.S.2    Bhaskar Rao, D.V.3
  • 23
    • 0025623681 scopus 로고
    • A neural network learning algorithm for adaptive principal component Extraction (APEX)
    • (Albuquerque, NM) Apr
    • S. Y. Kung and K. 1. Diamantaras, “A neural network learning algorithm for adaptive principal component Extraction (APEX),” in Proc. ICASSP (Albuquerque, NM), Apr. 1990, pp. 861–864
    • (1990) Proc. ICASSP , pp. 861-864
    • Kung, S.Y.1    Diamantaras, K.I.2
  • 24
    • 0026263077 scopus 로고    scopus 로고
    • Neural networks for extracting unsymmetric principal components
    • B. H. Juang, S. Y. Kung and C. A. Kamm New York: IEEE Press
    • S. Y. Kung and K. I. Diamantaras, “Neural networks for extracting unsymmetric principal components,” in Neural Networks for Signal Processing, B. H. Juang, S. Y. Kung and C. A. Kamm Eds. New York: IEEE Press, pp. 50–59
    • Neural Networks for Signal Processing , pp. 50-59
    • Kung, S.Y.1    Diamantaras, K.I.2
  • 27
    • 0002824293 scopus 로고
    • Asymptotic properties of stochastic approximations with constant coefficients
    • H. J. Kushner and H. Huang, “Asymptotic properties of stochastic approximations with constant coefficients,” SIAM J. Contr., Optimization, vol. 19, pp. 87–105, 1981
    • (1981) SIAM J. Contr., Optimization , vol.19 , pp. 87-105
    • Kushner, H.J.1    Huang, H.2
  • 28
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Mar
    • R. Linsker. “Self-organization in a perceptual network,” IEEE Comput. vol. 21, 105–117, Mar. 1988
    • (1988) IEEE Comput , vol.21 , pp. 105-117
    • Linsker, R.1
  • 29
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • Aug
    • L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC-22, no. 4, pp. 551–575, Aug. 1977
    • (1977) IEEE Trans. Automat. Contr , vol.AC-22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 31
    • 0038049228 scopus 로고
    • A new application of SVD to harmonic retrieval
    • E. F. Deprettere North Holland: Elsevier
    • S. Mayrargue and J. P. Jouveau, “A new application of SVD to harmonic retrieval,” in SVD and Signal Processing, E. F. Deprettere, Ed. North Holland: Elsevier 1988, pp. 467–472
    • (1988) SVD and Signal Processing , pp. 467-472
    • Mayrargue, S.1    Jouveau, J.P.2
  • 32
    • 0003008654 scopus 로고
    • The appeal of parallel distributed processing
    • J. L. McClelland D. E. Rumelhart PDP Research Group Cambridge, MA: MIT Press
    • J. L. McClelland, D. E. Rumelhart, and G. E. Hinton, “The appeal of parallel distributed processing,” in Parallel Distributed Processing, vol. 1, J. L. McClelland, D. E. Rumelhart, and the PDP Research Group, Eds. Cambridge, MA: MIT Press, 1986
    • (1986) Parallel Distributed Processing , vol.1
    • McClelland, J.L.1    Rumelhart, D.E.2    Hinton, G.E.3
  • 33
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math. Biology, vol. 15, pp. 267–273, 1982.
    • (1982) J. Math. Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 35
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • E. Oja, “Neural networks, principal components, and subspaces,” Int. J.Neural Syst., vol. I, no. I, pp. 61–68, 1989.
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 37
    • 0023978010 scopus 로고
    • Optimal linear-quadratic systems for detection and estimation
    • Mar
    • B. Picinbono and P. Duvaut, “Optimal linear-quadratic systems for detection and estimation,” IEEE Trans. Inform. Theory, vol. 34, no. 2, pp. 30631 I, Mar. 1988.
    • (1988) IEEE Trans. Inform. Theory , vol.34 , Issue.2 , pp. 306-311
    • Picinbono, B.1    Duvaut, P.2
  • 38
    • 0022901256 scopus 로고
    • Direction-of-arrival estimation by subspace rotation methods-ESPRIT
    • (Tokyo,Japan)
    • R. Roy, A. Paulraj, and T. Kailath, “Direction-of-arrival estimation by subspace rotation methods-ESPRIT,” in Proc. ICASSP 86, (Tokyo, Japan), 1986, pp. 2495-2498.
    • (1986) Proc. ICASSP 86 , pp. 2495-2498
    • Roy, R.1    Paulraj, A.2    Kailath, T.3
  • 39
    • 0022794413 scopus 로고
    • ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise
    • Oct
    • R. Roy, A. Paulraj, and T. Kailath. “ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, no. S), pp. 1340–1342, Oct. 1986.
    • (1986) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-34 , Issue.5 , pp. 1340-1342
    • Roy, R.1    Paulraj, A.2    Kailath, T.3
  • 40
    • 0025164912 scopus 로고
    • Development of feature detectors by selforganization
    • J. Rubner and K. Schulten, “Development of feature detectors by selforganization,”Biolog. Cyber., vol. 62, pp. 193–199, 1990.
    • (1990) Biolog. Cyber , vol.62 , pp. 193-199
    • Rubner, J.1    Schulten, K.2
  • 41
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feed forward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feed forward neural network,” Neural Networks, vol. 2, no. 6, pp, 459–473, 1989.
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.D.1
  • 42
    • 0000624015 scopus 로고
    • Multiple emitter location and signal parameter estimation
    • R. Schmidt, “Multiple emitter location and signal parameter estimation,” in Proc. RADC Spectrum Estimation Workshop, 1979, pp. 243–258.
    • (1979) Proc. RADC Spectrum Estimation Workshop , pp. 243-258
    • Schmidt, R.1
  • 43
    • 0020189061 scopus 로고
    • Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood
    • Sept
    • D. W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood,” Proc. IEEE, vol. 70, no. 9, pp. 975–989, Sept. 1982.
    • (1982) Proc. IEEE , vol.70 , Issue.9 , pp. 975-989
    • Tufts, D.W.1    Kumaresan, R.2
  • 45
    • 0023306518 scopus 로고
    • Two methods for optimal MECG elimination and FECG detection from skin electrode signals
    • Mar
    • J. Vanderschoot, et al., “Two methods for optimal MECG elimination and FECG detection from skin electrode signals,” IEEE Trans. Biomed. Eng., vol. BME, vol. 34, no. 3, pp. 233–242, Mar. 1987.
    • (1987) IEEE Trans. Biomed. Eng , vol.BME-34 , Issue.3 , pp. 233-242
    • Vanderschoot, J.1
  • 46
    • 0026062230 scopus 로고
    • Quadratic detection of signals with drifting phase
    • Feb
    • V.V. Veeravali and H. V. Poor, “Quadratic detection of signals with drifting phase,” J. Acoust. Soc. Am., vol. 89, no. 2, pp. 811–819, Feb. 1991.
    • (1991) J. Acoust. Soc. Am , vol.89 , Issue.2 , pp. 811-819
    • Veeravali, V.V.1    Poor, H.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.