메뉴 건너뛰기




Volumn 16, Issue 5, 1994, Pages 554-560

FeaturePreserving Clustering of 2-D Data for Two-Class Problems Using Analytical Formulas: An Automatic and Fast Approach

Author keywords

analytical formulas; automatic fast clustering; cluster representatives; decision boundary; featurepreserving; hierarchical methods; k means; Two class clustering

Indexed keywords

COMPUTER VISION; IMAGE CODING; ITERATIVE METHODS; NUMERICAL METHODS; PATTERN RECOGNITION;

EID: 0028425805     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.291439     Document Type: Article
Times cited : (14)

References (13)
  • 2
    • 0022573941 scopus 로고
    • Hierarchical cluster analysis of emotional concerns and personality characteristics in a freshman population
    • D. Lecomjtle, L. Kaufman, and P. J. Rousseeuw, “Hierarchical cluster analysis of emotional concerns and personality characteristics in a freshman population,” Acta Psychiatrica Belgica, vol. 86, pp. 324–333, 1986.
    • (1986) Acta Psychiatrica Belgica , vol.86 , pp. 324-333
    • Lecomjtle, D.1    Kaufman, L.2    Rousseeuw, P.J.3
  • 3
    • 0041330239 scopus 로고
    • Recent convergence results for the fuzzy c-means clustering algorithms
    • R. J. Hathaway and J. C. Bezdek, “Recent convergence results for the fuzzy c-means clustering algorithms,” J. Classification, vol. 2, pp. 29–39, 1988.
    • (1988) J. Classification , vol.2 , pp. 29-39
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 6
    • 0022266946 scopus 로고
    • Moment-preserving thresholding: A new approach
    • W. H. Tsai, “Moment—preserving thresholding: A new approach,” Comput. Vision Graphics Image Process., vol. 29, pp. 377–393, 1985.
    • (1985) Comput. Vision Graphics Image Process. , vol.29 , pp. 377-393
    • Tsai, W.H.1
  • 7
    • 0027574839 scopus 로고
    • Universal principal axis: An easy-to-construct tool useful in defining shape orientations for almost every kind of shape
    • J. C. Lin, “Universal principal axis : An easy-to-construct tool useful in defining shape orientations for almost every kind of shape,” Pattern Recognit., vol. 26, pp. 485–493, 1993.
    • (1993) Pattern Recognit. , vol.26 , pp. 485-493
    • Lin, J.C.1
  • 11
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Applied Statistics, vol. 28, pp. 100–108, 1979.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 12
    • 0000743235 scopus 로고
    • State of the art in pattern recognition
    • May
    • G. Nagy, “State of the art in pattern recognition,” Proc. IEEE, vol. 56, pp. 836–862, May, 1968.
    • (1968) Proc. IEEE , vol.56 , pp. 836-862
    • Nagy, G.1
  • 13
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • Jan.
    • C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,” IEEE Trans. Comput., vol. C-20, pp. 68–86, Jan. 1971.
    • (1971) IEEE Trans. Comput. , vol.C-20 , pp. 68-86
    • Zahn, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.