-
1
-
-
0019620739
-
Active adaptive sound control in a duct: A computer simulation
-
Sept.
-
A. Burgess, “Active adaptive sound control in a duct: A computer simulation,” J. Acoust. Soc. Atner., vol. 70, no. 3, pp. 715–726, Sept. 1981.
-
(1981)
J. Acoust. Soc. Atner
, vol.70
, Issue.3
, pp. 715-726
-
-
Burgess, A.1
-
2
-
-
82955209011
-
Method and apparatus for canceling vibration
-
U.S. Patent No. 4 489 441 Dec. 18
-
G. B. Chaplin, “Method and apparatus for canceling vibration,” U. S. Patent No. 4 489 441 Dec. 18, 1984.
-
-
-
Chaplin, G.B.1
-
3
-
-
0023672898
-
Active noise control using adaptive digital signal processing
-
(New York)
-
L. J. Eriksson, M. C. Allie, and C. D. Bremigan, “Active noise control using adaptive digital signal processing,” in Proc. ICASSP (New York), 1988, pp. 2594–2597.
-
(1988)
Proc. ICASSP
, pp. 2594-2597
-
-
Eriksson, L.J.1
Allie, M.C.2
Bremigan, C.D.3
-
4
-
-
0023997320
-
Parameter estimation of superimposed signals using the EM algorithm
-
Apr.
-
M. Feder and E. Weinstein, “Parameter estimation of superimposed signals using the EM algorithm,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, no. 4, Apr. 1988.
-
(1988)
IEEE Trans. Acoust. Speech Signal Processing
, vol.36
, Issue.4
-
-
Feder, M.1
Weinstein, E.2
-
5
-
-
2442584809
-
Sequential compound estimation
-
D. C. Gilliland, “Sequential compound estimation,” Ann. Math. Stat., vol. 39, no. 6, pp. 1890–1904, 1968.
-
(1968)
Ann. Math. Stat
, vol.39
, Issue.6
, pp. 1890-1904
-
-
Gilliland, D.C.1
-
6
-
-
51249182467
-
TTie fc-estended set-compound estimation problem in a nonregular family of distribution over [0,0+1]
-
Y. Nogami, “TTie fc-estended set-compound estimation problem in a nonregular family of distribution over [0,0+1]Annal Inst. Stat. Math., vol. 31A, pp. 169–176, 1979.
-
(1979)
Annal Inst. Stat. Math
, vol.31A
, pp. 169-176
-
-
Nogami, Y.1
-
7
-
-
0011026447
-
Asymptotically subminimax solutions of compound statistical decision problems
-
H. Robbins, “Asymptotically subminimax solutions of compound statistical decision problems,” in Proc. 2nd Berkeley Symp. Math. Stat. Problems, 1951, 131–148.
-
(1951)
Proc. 2nd Berkeley Symp. Math. Stat. Problems
, pp. 131-148
-
-
Robbins, H.1
-
8
-
-
0000016172
-
A stochastic approximation method
-
H. Robbins and S. Monro, “A stochastic approximation method,” Annals Mathematical Stat., vol. 22, pp. 400–407, 1951.
-
(1951)
Annals Mathematical Stat
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
9
-
-
0001402719
-
The sequential compound decision problem with m x n finite loss matrix
-
J. Van Ryzin, “The sequential compound decision problem with m x n finite loss matrix,” Ann. Math. Stat., vol. 37, pp. 954–975, 1966.
-
(1966)
Ann. Math. Stat
, vol.37
, pp. 954-975
-
-
Van Ryzin, J.1
-
10
-
-
84961481044
-
Admissible solutions of fc-extended finite state set and sequence compound decision problems
-
S. B. Vardeman, “Admissible solutions of fc-extended finite state set and sequence compound decision problems,” J. Multivariate Anal, vol. 10, pp. 426–441, 1980.
-
(1980)
J. Multivariate Anal
, vol.10
, pp. 426-441
-
-
Vardeman, S.B.1
-
11
-
-
84942213858
-
Active attenuator
-
US Patent 4 473 906
-
G. E. Wamaka, L. Poole, and J. Tichy, “Active attenuator,” US Patent 4 473 906, 25, 1984.
-
, vol.25
-
-
Wamaka, G.E.1
Poole, L.2
Tichy, J.3
-
12
-
-
84942213859
-
Signal enhancement using single and multiple-sensor measurements
-
Dec.
-
E. Weinstein, M. Feder, and A. Oppenheim, “Signal enhancement using single and multiple-sensor measurements,” MIT-RLE Tech. Rep. 560, Dec. 1960.
-
(1960)
MIT-RLE Tech. Rep
, pp. 560
-
-
Weinstein, E.1
Feder, M.2
Oppenheim, A.3
-
13
-
-
0027167195
-
A new two-sensor active noise cancellation algorithm
-
(Minneapolis) April
-
K. Zangi, “A new two-sensor active noise cancellation algorithm,” in Proc. ICASSP (Minneapolis), April 1993, pp. 351–354, vol. II.
-
(1993)
Proc. ICASSP
, vol.II
, pp. 351-354
-
-
Zangi, K.1
|