메뉴 건너뛰기




Volumn 5, Issue 2, 1994, Pages 240-254

Recurrent Neural Networks and Robust Time Series Prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; DIFFERENCE EQUATIONS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PREDICTIVE CONTROL SYSTEMS; ROBUSTNESS (CONTROL SYSTEMS); SENSITIVITY ANALYSIS; SIGNAL FILTERING AND PREDICTION; TIME SERIES ANALYSIS;

EID: 0028401357     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.279188     Document Type: Article
Times cited : (1016)

References (42)
  • 2
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • R. Battiti, “First- and second-order methods for learning: Between steepest descent and Newton's method,” Neural Computation, vol. 4, pp. 141–166, 1992.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 4
    • 84950643380 scopus 로고
    • Intervention analysis with applications to economic and environmental problems
    • G. E. Box and G. C. Tiao, “Intervention analysis with applications to economic and environmental problems,” J. Amer. Stat. Assoc., vol. 70, 1975.
    • (1975) J. Amer. Stat. Assoc. , vol.70
    • Box, G.E.1    Tiao, G.C.2
  • 6
    • 0001590347 scopus 로고
    • The identification of polynomial systems by means of higher order spectra
    • D. R. Brillinger, “The identification of polynomial systems by means of higher order spectra,” J. Sound Vib., vol. 12, pp. 301–313, 1970.
    • (1970) J. Sound Vib. , vol.12 , pp. 301-313
    • Brillinger, D.R.1
  • 7
    • 85083614188 scopus 로고
    • Time series and neural network modeling
    • doctoral dissertation, Univ. of Washington
    • J. T. Connor, “Time series and neural network modeling,” doctoral dissertation, Univ. of Washington, 1993.
    • (1993)
    • Connor, J.T.1
  • 8
    • 0344111838 scopus 로고
    • Recurrent and NARMA modeling
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Matteo, CA: Morgan Kauffman
    • J. T. Connor, L. E. Atlas, and R. D. Martin, “Recurrent and NARMA modeling,” Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Matteo, CA: Morgan Kauffman, pp. 301–308, 1992.
    • (1992) Advances in Neural Information Processing Systems, 4 , pp. 301-308
    • Connor, J.T.1    Atlas, L.E.2    Martin, R.D.3
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–21, 1990.
    • (1990) Cognitive Science , vol.14 , pp. 179-221
    • Elman, J.L.1
  • 11
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman, “Multivariate adaptive regression splines,” The Annals of Statistics, vol. 19, pp. 1–141, 1991.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 13
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: 1. Parallel development and coding of neural feature detectors
    • S. Grossberg, “Adaptive pattern classification and universal recoding: 1. Parallel development and coding of neural feature detectors,” Biol. Cybern., vol. 23, pp. 121–134, 1976.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 16
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554–2558, 1982.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 22
    • 0011216908 scopus 로고
    • Bayesian non-linear modeling for the energy prediction completion
    • Draft 1.3.
    • D. J. C. MacKay, “Bayesian non-linear modeling for the energy prediction completion,” Draft 1.3., 1993.
    • (1993)
    • MacKay, D.J.C.1
  • 23
    • 85083609846 scopus 로고
    • Approximate conditional mean non-Gaussian filters
    • Dept. of Statistics, Univ. of Washington
    • R. D. Martin, and R. Fraiman, “Approximate conditional mean non-Gaussian filters,” Tech. Report, Dept. of Statistics, Univ. of Washington, 1993.
    • (1993) Tech. Report
    • Martin, R.D.1    Fraiman, R.2
  • 24
    • 0002862560 scopus 로고
    • Robust estimation of autoregressive models (with discussion)
    • D. R. Brillinger and G. C. Tiao, Eds. Institute of Mathematical Statistics, Hayward, Calif.
    • R. D. Martin, “Robust estimation of autoregressive models (with discussion),” in Directions in Time Series, D. R. Brillinger and G. C. Tiao, Eds. Institute of Mathematical Statistics, Hayward, Calif., 1980, pp. 228–262.
    • (1980) Directions in Time Series , pp. 228-262
    • Martin, R.D.1
  • 25
    • 0020183045 scopus 로고
    • Robust-resistant spectrum estimation
    • R. D. Martin, and D. J. Thompson, “Robust-resistant spectrum estimation,” Proc. IEEE, vol. 70, pp. 1097–1115, 1982.
    • (1982) Proc. IEEE , vol.70 , pp. 1097-1115
    • Martin, R.D.1    Thompson, D.J.2
  • 26
    • 85083601481 scopus 로고
    • Highly robust estimation of autoregression integrated time series models
    • R. D. Martin and V. J. Yohai, “Highly robust estimation of autoregression integrated time series models,” Tech. Report., 1985.
    • (1985) Tech. Report
    • Martin, R.D.1    Yohai, V.J.2
  • 27
    • 0037877489 scopus 로고
    • Robust estimation for time series autoregressions
    • R. L. Launer and G. N. Wilkinson, Eds. New York: Academic Press
    • R. D. Martin, “Robust estimation for time series autoregressions,” in Robustness in Statistics, R. L. Launer and G. N. Wilkinson, Eds. New York: Academic Press, pp. 147–176, 1979.
    • (1979) Robustness in Statistics , pp. 147-176
    • Martin, R.D.1
  • 28
    • 0016473357 scopus 로고
    • Approximate non-Gaussian filtering with linear state and observation relations
    • C. J. Masreliez, “Approximate non-Gaussian filtering with linear state and observation relations,” IEEE Transactions on Automatic Control. pp. 107–110, 1975.
    • (1975) IEEE Transactions on Automatic Control , pp. 107-110
    • Masreliez, C.J.1
  • 30
    • 0002291616 scopus 로고    scopus 로고
    • Neural net architectures for temporal sequence processing
    • A. Weigend and N. Gershenfeld, Eds. Redwood City, CA: Addison-Wesley
    • M. C. Mozer, “Neural net architectures for temporal sequence processing,” in Predicting the Future and Understanding the Past, A. Weigend and N. Gershenfeld, Eds. Redwood City, CA: Addison-Wesley.
    • Predicting the Future and Understanding the Past
    • Mozer, M.C.1
  • 31
    • 0003541323 scopus 로고    scopus 로고
    • Soft competitive adaptation: Neural network learning algorithm based on fitting statistical mixtures
    • Tech. Report, CMU-CS-91-126, CMU, Pittsburgh
    • S. J. Nowlan, “Soft competitive adaptation: Neural network learning algorithm based on fitting statistical mixtures,” Tech. Report, CMU-CS-91-126, CMU, Pittsburgh.
    • Nowlan, S.J.1
  • 33
    • 0023534496 scopus 로고
    • Generalization of backpropagation to recurrent and higher order networks
    • F. J. Pineda, “Generalization of backpropagation to recurrent and higher order networks,” in Proc. IEEE Conf. Neural Inform. Proc. Syst. 1987.
    • (1987) Proc. IEEE Conf. Neural Inform. Proc. Syst.
    • Pineda, F.J.1
  • 34
    • 0003838146 scopus 로고    scopus 로고
    • The utility driven dynamic error propagation network
    • Tech Report CUED/F-1NFENG/TR.L Cambridge: Cambridge University, Department of Engineering
    • A. J. Robinson and F. Fallside, “The utility driven dynamic error propagation network,” Tech Report CUED/F-1NFENG/TR.L Cambridge: Cambridge University, Department of Engineering.
    • Robinson, A.J.1    Fallside, F.2
  • 35
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, and J. L. McCelland, Eds. Cambridge, MA: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing, vol. 1, D. E. Rumelhart, and J. L. McCelland, Eds. Cambridge, MA: MIT Press, pp. 318–362, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 0000053463 scopus 로고
    • A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks
    • J. Schmidhuber, “A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks,” Neural Computation, vol. 4, pp. 243–248, 1992.
    • (1992) Neural Computation , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 37
    • 0000366506 scopus 로고
    • On the theory of bilinear models
    • T. Subba Rao, “On the theory of bilinear models,”.1. Roy. Statist. Soc. Ser. B, vol. 43, pp. 244–255, 1981.
    • (1981) J. Roy. Statist. Soc. Ser. B , vol.43 , pp. 244-255
    • Subba Rao, T.1
  • 40
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proc. of the IEEE, pp. 1550–1560, vol. 78, no. 10, Oct. 1990.
    • (1990) Proc. of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 41
    • 0001202594 scopus 로고
    • A teaming algorithm for continually running fully recurrent neural networks
    • R. Williams and D. Zipser, “A teaming algorithm for continually running fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270–280, 1989.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 42
    • 0000729019 scopus 로고
    • Forecasting demand for electric power
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Matteo, CA: Morgan Kauffman
    • Jen-Lun Yuan and T. L. Fine, “Forecasting demand for electric power,” Advances in Neural Information Processing Systems vol. 5. S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Matteo, CA: Morgan Kauffman, pp. 739–746, 1993.
    • (1993) , vol.5 , pp. 739-746
    • Yuan, J.-L.1    Fine, T.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.