메뉴 건너뛰기




Volumn 5, Issue 2, 1994, Pages 279-297

Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER ARCHITECTURE; COMPUTER SIMULATION; KALMAN FILTERING; LEARNING SYSTEMS; NONLINEAR CONTROL SYSTEMS; PARAMETER ESTIMATION; SENSITIVITY ANALYSIS; SIGNAL NOISE MEASUREMENT; SPEED CONTROL; STATE SPACE METHODS;

EID: 0028401031     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.279191     Document Type: Article
Times cited : (416)

References (28)
  • 3
    • 0004503125 scopus 로고
    • Adaptive state representation and estimation using recurrent connectionist networks
    • W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, chap. 4
    • R. J. Williams, “Adaptive state representation and estimation using recurrent connectionist networks,” in Neural Networks for Control, W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1990, chap. 4, pp. 97–114.
    • (1990) Neural Networks for Control , pp. 97-114
    • Williams, R.J.1
  • 4
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270–280, 1989.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 5
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proceedings of the IEEE vol. 78, no. 10, pp. 1550–1560, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 6
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng, “An efficient gradient-based algorithm for on-line training of recurrent network trajectories,” Neural Computation, vol. 2, pp. 490–501, 1990.
    • (1990) Neural Computation , vol.2 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 7
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with the extended Kalman algorithm
    • Denver 1988, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. Singhal and L. Wu, “Training multilayer perceptrons with the extended Kalman algorithm,” in Advances in Neural Information Processing Systems I. Denver 1988, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 133–140.
    • (1988) Advances in Neural Information Processing Systems I , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 8
    • 0026371798 scopus 로고
    • Linearized least-squares training of multilayer feedforward neural networks
    • Seattle
    • S. C. Douglas and T. H.-Y. Meng, “Linearized least-squares training of multilayer feedforward neural networks,” in International Joint Conference on Neural Networks. Seattle, 1991, vol. I, pp. 307–312.
    • (1991) International Joint Conference on Neural Networks , vol.1 , pp. 307-312
    • Douglas, S.C.1    Meng, T.H.-Y.2
  • 9
    • 0026408191 scopus 로고
    • Decoupled extended Kalman filter training of feedforward layered networks
    • Seattle
    • G. V. Puskorius and L. A. Feldkamp, “Decoupled extended Kalman filter training of feedforward layered networks,” in International Joint Conference on Neural Networks, Seattle 1991, vol. I, pp. 771–777.
    • (1991) International Joint Conference on Neural Networks , vol.1 , pp. 771-777
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 11
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4—27, 1990.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 12
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of dynamical systems containing neural networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 252–262, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 252-262
    • Narendra, K.S.1    Parthasarathy, K.2
  • 13
    • 0013320371 scopus 로고
    • Some observations on the use of the extended Kalman filter as a recurrent network learning algorithm
    • Technical Report NU-CCS-92-1, Boston: Northeastern University, College of Computer Science
    • R. J. Williams, “Some observations on the use of the extended Kalman filter as a recurrent network learning algorithm,” Technical Report NU-CCS-92-1, Boston: Northeastern University, College of Computer Science, 1992.
    • (1992)
    • Williams, R.J.1
  • 14
    • 85132302281 scopus 로고
    • Training recurrent networks using the extended Kalman filter
    • Baltimore
    • R. J. Williams, “Training recurrent networks using the extended Kalman filter,” in International Joint Conference on Neural Neworks, Baltimore 1992, vol. IV, pp. 241–246.
    • (1992) International Joint Conference on Neural Neworks , vol.4 , pp. 241-246
    • Williams, R.J.1
  • 15
    • 0025539361 scopus 로고
    • Nonlinear dynamic system identification using artificial neural networks (ANNs)
    • San Diego
    • B. Fernandez, A. G. Parlos, and W. K. Tsai, “Nonlinear dynamic system identification using artificial neural networks (ANNs),” in International Joint Conference on Neural Networks, San Diego 1990, vol. II, pp. 133–141.
    • (1990) International Joint Conference on Neural Networks , vol.2 , pp. 133-141
    • Fernandez, B.1    Parlos, A.G.2    Tsai, W.K.3
  • 16
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • S. Shah, F. Palmieri, and M. Datum, “Optimal filtering algorithms for fast learning in feedforward neural networks,” Neural Networks, vol. 5, pp. 779–787, 1992.
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 17
    • 0000838510 scopus 로고
    • Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm
    • Paris
    • M. B. Matthews, “Neural network nonlinear adaptive filtering using the extended Kalman filter algorithm,” in Proceedings of the International Neural Networks Conference, Paris 1990, vol. I, pp. 115–119.
    • (1990) Proceedings of the International Neural Networks Conference , vol.1 , pp. 115-119
    • Matthews, M.B.1
  • 18
    • 0027072381 scopus 로고
    • A computationally efficient algorithm for training recurrent connectionist networks
    • Chicago
    • M. M. Livstone, J. A. Farrell, and W. L. Baker, “A computationally efficient algorithm for training recurrent connectionist networks,” in Proceedings of the 1992 American Control Conference, Chicago, 1992, vol. II, pp. 555–561.
    • (1992) Proceedings of the 1992 American Control Conference , vol.2 , pp. 555-561
    • Livstone, M.M.1    Farrell, J.A.2    Baker, W.L.3
  • 19
    • 71149085453 scopus 로고
    • Model reference adaptive control with recurrent networks trained by the dynamic DEKF algorithm
    • Baltimore
    • G. V. Puskorius and L. A. Feldkamp, “Model reference adaptive control with recurrent networks trained by the dynamic DEKF algorithm,” in International Joint Conference on Neural Networks, Baltimore, 1992), vol. II, pp. 106–113.
    • (1992) International Joint Conference on Neural Networks , vol.2 , pp. 106-113
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 20
    • 0342553464 scopus 로고
    • Supervised learning and systems with excess degrees of freedom
    • Pittsburgh, 1988, D. Touretzky, G. Hinton and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • M. I. Jordan, “Supervised learning and systems with excess degrees of freedom,” in Proceedings of the 1988 Connectionists Summer School, Pittsburgh, 1988, D. Touretzky, G. Hinton and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, pp. 62–75.
    • (1988) Proceedings of the 1988 Connectionists Summer School , pp. 62-75
    • Jordan, M.I.1
  • 21
    • 0024921354 scopus 로고
    • Generic constraints on underspecified target trajectories
    • Washington D.C.
    • M. I. Jordan, “Generic constraints on underspecified target trajectories,” in International Joint Conference on Neural Networks, Washington D.C., 1989, vol. I, pp. 217–225.
    • (1989) International Joint Conference on Neural Networks , vol.1 , pp. 217-225
    • Jordan, M.I.1
  • 22
    • 0008980990 scopus 로고
    • Neural control systems trained by dynamic gradient methods for automotive applications
    • Baltimore
    • L. A. Feldkamp, G. V. Puskorius, L. I. Davis, Jr., and F. Yuan, “Neural control systems trained by dynamic gradient methods for automotive applications,” in International Joint Conference on Neural Networks, Baltimore, 1992, vol. II, pp. 798–804.
    • (1992) International Joint Conference on Neural Networks , vol.2 , pp. 798-804
    • Feldkamp, L.A.1    Puskorius, G.V.2    Davis, L.I.3    Yuan, F.4
  • 25
    • 0003323760 scopus 로고
    • A bioreactor benchmark for adaptive network-based process control
    • W. T. Miller, III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, chap. 16, and Appendix A, 1990, pp. 476–480. [Note errors in the equations on page 477.]
    • L. H. Ungar, “A bioreactor benchmark for adaptive network-based process control,” in Neural Networks for Control, W. T. Miller, III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, chap. 16, pp. 387—402 and Appendix A, 1990, pp. 476–480. [Note errors in the equations on page 477].
    • (1990) Neural Networks for Control , pp. 387-402
    • Ungar, L.H.1
  • 26
    • 0019927659 scopus 로고
    • Theoretical Investigations of dynamic behavior of isothermal continuous stirred tank biological reactors
    • P. Agrawal, C. Lee, H. C. Lim, and D. Ramkrishna, “Theoretical Investigations of dynamic behavior of isothermal continuous stirred tank biological reactors,” Chemical Engineering Science vol. 37, no. 3, pp. 453–462, 1982.
    • (1982) Chemical Engineering Science , vol.37 , Issue.3
    • Agrawal, P.1    Lee, C.2    Lim, H.C.3    Ramkrishna, D.4
  • 27
    • 0023577331 scopus 로고
    • Nonlinear low frequency phenomenological engine modeling and analysis
    • vol. 1, pp. 336–340, 1987; J. A. Cook and B. K. Powell, “Modeling of an internal combustion engine for control analysis,” IEEE Control Systems Magazine
    • B. K. Powell and J. A. Cook, “Nonlinear low frequency phenomenological engine modeling and analysis,” Proceedings of the 1987 American Control Conference, vol. 1, pp. 336–340, 1987; J. A. Cook and B. K. Powell, “Modeling of an internal combustion engine for control analysis,” IEEE Control Systems Magazine, vol. 8, no. 4, 20–26, 1988.
    • (1988) Proceedings of the 1987 American Control Conference , vol.8 , Issue.4 , pp. 20-26
    • Powell, B.K.1    Cook, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.