-
1
-
-
85032752004
-
Progress in supervised neural networks
-
D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE Signal Processing Magazine, vol. 10, no. 1, pp. 8–39, 1993.
-
(1993)
IEEE Signal Processing Magazine
, vol.10
, Issue.1
, pp. 8-39
-
-
Hush, D.R.1
Horne, B.G.2
-
2
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
4
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
-
K. Hornik, M. Stinchcombe and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Networks, vol. 3, pp. 551–560, 1990.
-
(1990)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
5
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
P. Cardaliaguet and G. Euvrard, “Approximation of a function and its derivative with a neural network,” Neural Networks, vol. 5, pp. 207–220, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
6
-
-
0026449851
-
On learning the derivatives of an unknown mapping with multilayer feedforward networks
-
A. R. Gallant and H. White, “On learning the derivatives of an unknown mapping with multilayer feedforward networks,” Neural Networks, vol. 5, pp. 129–138, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 129-138
-
-
Gallant, A.R.1
White, H.2
-
7
-
-
0004059199
-
-
Cambridge, MA: MIT Press
-
W. Thomas Miller, III, R. S. Sutton, and Paul J. Werbos, Neural Networks for Control, Cambridge, MA: MIT Press, 1990
-
(1990)
Neural Networks for Control
-
-
Thomas Miller, W.1
Sutton, R.S.2
Werbos, P.J.3
-
8
-
-
0002437599
-
Neurocontrol and supervised learning: An overview and evaluation
-
D. White and D. Sofge, Eds. Van Nostrand
-
P. J. Werbos, “Neurocontrol and supervised learning: An overview and evaluation,” in Handbook of intelligent control, D. White and D. Sofge, Eds. Van Nostrand, 1992.
-
(1992)
Handbook of intelligent control
-
-
Werbos, P.J.1
-
9
-
-
0000676676
-
Learning to control an unstable system with forward modeling
-
David S. Touretzky, Ed. Morgan Kaufmann
-
M. I. Jordan and R. A. Jacobs, “Learning to control an unstable system with forward modeling,” in Neural Information Processing Systems 2, David S. Touretzky, Ed. Morgan Kaufmann, 1990, pp. 324–331.
-
(1990)
Neural Information Processing Systems 2
, pp. 324-331
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
10
-
-
0023869287
-
Feedback-error-learning neural network for trajectory control of a robotic manipulator
-
H. Miyamoto, M. Kawato, T. Setoyama and R. Suzuki, “Feedback-error-learning neural network for trajectory control of a robotic manipulator,” Neural Networks, vol. 1, pp. 251–265, 1988.
-
(1988)
Neural Networks
, vol.1
, pp. 251-265
-
-
Miyamoto, H.1
Kawato, M.2
Setoyama, T.3
Suzuki, R.4
-
11
-
-
0001414608
-
Generalization of backpropagation to recurrent and higher order neural networks
-
Dana Z. Anderson, Ed. American Institute of Physics
-
F. J. Pineda, “Generalization of backpropagation to recurrent and higher order neural networks,” in Neural Information Processing Systems, Dana Z. Anderson, Ed. American Institute of Physics, 1988, pp. 602–611.
-
(1988)
Neural Information Processing Systems
, pp. 602-611
-
-
Pineda, F.J.1
-
13
-
-
0001202597
-
Learning state space trajectories in recurrent neural networks
-
B. A. Pearlmutter, “Learning state space trajectories in recurrent neural networks,” Neural Computation, vol. 1, no. 2, pp. 263–269, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 263-269
-
-
Pearlmutter, B.A.1
-
14
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4—27, 1990.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.1
, pp. 4-27
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
15
-
-
0026117466
-
Gradient methods for the optimization of dynamical systems containing neural networks
-
K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of dynamical systems containing neural networks,” IEEE Transactions on Neural Networks, vol. 2, pp. 252–262, 1991.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, pp. 252-262
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
16
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Computation, vol. 1, no. 2, pp. 270–280, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
17
-
-
0003444646
-
Parallel Distributed Processing
-
Cambridge, MA: MIT Press
-
D. Rumelhart and J. McClelland, Parallel Distributed Processing. Vol. 1, Cambridge, MA: MIT Press, 1987
-
, vol.1
-
-
Rumelhart, D.1
McClelland, J.2
-
18
-
-
0000903748
-
Generalization of backpropagation with application to a recurrent gas market model
-
P. J. Werbos, “Generalization of backpropagation with application to a recurrent gas market model,” Neural Networks, vol. 1, pp. 339–356, 1988.
-
(1988)
Neural Networks
, vol.1
, pp. 339-356
-
-
Werbos, P.J.1
-
19
-
-
0005813339
-
Application of adjoint operators to neural learning
-
J. Barhen, N. Toomarian and S. Gulati, “Application of adjoint operators to neural learning,” Applied Mathematics Letters, vol. 3, no. 3, pp. 13–18.
-
Applied Mathematics Letters
, vol.3
, Issue.3
, pp. 13-18
-
-
Barhen, J.1
Toomarian, N.2
Gulati, S.3
-
20
-
-
25144495329
-
Adjoint operator algorithms for faster learning in dynamical neural networks
-
David S. Touretzky, Ed. San Matteo, CA: Morgan Kaufmann
-
J. Barhen, N. Toomarian and S. Gulati, “Adjoint operator algorithms for faster learning in dynamical neural networks,” Advances in Neural Information Processing Systems 2 David S. Touretzky, Ed. San Matteo, CA: Morgan Kaufmann, 1990, pp. 498–-508.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 498-508
-
-
Barhen, J.1
Toomarian, N.2
Gulati, S.3
-
21
-
-
0026685372
-
Learning a trajectory using adjoint functions and teacher forcing
-
N. B. Toomarian and J. Barhen, “Learning a trajectory using adjoint functions and teacher forcing,” Neural Networks, vol. 5, no. 3, pp. 473–484.
-
Neural Networks
, vol.5
, Issue.3
, pp. 473-484
-
-
Toomarian, N.B.1
Barhen, J.2
-
23
-
-
0003792312
-
-
Englewood Cliffs, NJ: Prentice Hall
-
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980
-
Linear Systems
-
-
Kailath, T.1
-
25
-
-
0000718697
-
Higher order recurrent networks and grammatical inference
-
David S. Touretzky, Ed. San Matteo, CA: Morgan Kaufmann
-
C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee and D. Chen, “Higher order recurrent networks and grammatical inference,” Neural Information Processing Systems 2, David S. Touretzky, Ed. San Matteo, CA: Morgan Kaufmann, 1990, pp. 380–387.
-
(1990)
Neural Information Processing Systems 2
, pp. 380-387
-
-
Giles, C.L.1
Sun, G.Z.2
Chen, H.H.3
Lee, Y.C.4
Chen, D.5
-
26
-
-
0001327717
-
Learning and extracting finite state automata with second-order recurrent neural networks
-
C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun and Y. C. Lee, “Learning and extracting finite state automata with second-order recurrent neural networks,” Neural Computation, vol. 4, 1992, pp. 393—405.
-
(1992)
Neural Computation
, vol.4
, pp. 393-405
-
-
Giles, C.L.1
Miller, C.B.2
Chen, D.3
Chen, H.H.4
Sun, G.Z.5
Lee, Y.C.6
-
27
-
-
0025254722
-
A time-delay neural network architecture for isolated word recognition
-
K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network architecture for isolated word recognition,” Neural Networks, vol. 3, pp. 23–43, 1990.
-
(1990)
Neural Networks
, vol.3
, pp. 23-43
-
-
Lang, K.J.1
Waibel, A.H.2
Hinton, G.E.3
-
29
-
-
40649128119
-
Nonlinear neural networks: principles, mechanisms, and architectures
-
S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks, vol. 1, no. 1, pp. 17–61, 1988.
-
(1988)
Neural Networks
, vol.1
, Issue.1
, pp. 17-61
-
-
Grossberg, S.1
-
30
-
-
0001160588
-
What size net gives valid generalization?
-
E. B. Baum and D. Haussler, “What size net gives valid generalization?” Neural Computation, vol. 1, pp. 151–160, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 151-160
-
-
Baum, E.B.1
Haussler, D.2
-
31
-
-
0026367608
-
Depth-size tradeoffs for neural computation
-
K.-Y. Siu, V. P. Roychowdhury, and T. Kailath, “Depth-size tradeoffs for neural computation,” IEEE Transactions on Computers, vol. 40, no. 12, pp. 1402–1412, 1991.
-
(1991)
IEEE Transactions on Computers
, vol.40
, Issue.12
, pp. 1402-1412
-
-
Siu, K.-Y.1
Roychowdhury, V.P.2
Kailath, T.3
|