메뉴 건너뛰기




Volumn 5, Issue 2, 1994, Pages 298-305

An Application of Recurrent Nets to Phone Probability Estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER ARCHITECTURE; CONTEXT FREE GRAMMARS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBABILITY; RANDOM PROCESSES; SPEECH ANALYSIS; SPEECH RECOGNITION; SPEECH TRANSMISSION;

EID: 0028392167     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.279192     Document Type: Article
Times cited : (343)

References (55)
  • 1
    • 0003464265 scopus 로고
    • Dynamic recurrent neural networks
    • Tech. Rep. CMU-CS-90-196, School of Computer Science, Carnegie-Mellon University, Dec.
    • B. A. Pearlmutter, “Dynamic recurrent neural networks,” Tech. Rep. CMU-CS-90-196, School of Computer Science, Carnegie-Mellon University, Dec. 1990.
    • (1990)
    • Pearlmutter, B.A.1
  • 2
    • 0003997653 scopus 로고
    • Gradient-based learning algorithms for recurrent connectionist networks
    • Tech. Rep. NU-CCS-90-9, Northeastern University, Apr.
    • R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent connectionist networks,” Tech. Rep. NU-CCS-90-9, Northeastern University, Apr. 1990.
    • (1990)
    • Williams, R.J.1    Zipser, D.2
  • 3
    • 84941541552 scopus 로고
    • Practical network design and implementation
    • (Cambridge Programme for Industry, Cambridge University), Sept.
    • T. Robinson, “Practical network design and implementation,” in Proceedings of the Cambridge Neural Network Summer School, (Cambridge Programme for Industry, Cambridge University), Sept. 1992.
    • (1992) Proceedings of the Cambridge Neural Network Summer School
    • Robinson, T.1
  • 5
    • 0004145667 scopus 로고
    • New York: Harcourt Brace Jovanovich, second ed.
    • P. Ladefoged, A Course in Phonetics. New York: Harcourt Brace Jovanovich, second ed., 1982.
    • (1982) A Course in Phonetics
    • Ladefoged, P.1
  • 6
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, pp. 257–286, 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 8
    • 0019114666 scopus 로고
    • Interpolated estimation of Markov source parameters from sparse data
    • F. Jelinek and R. Mercer, “Interpolated estimation of Markov source parameters from sparse data,” Pattern Recognition in Practice, pp. 381–397, 1980.
    • (1980) Pattern Recognition in Practice , pp. 381-397
    • Jelinek, F.1    Mercer, R.2
  • 11
    • 0022667694 scopus 로고
    • Speaker independent isolated word recognition using dynamic features of speech spectrum
    • S. Furui, “Speaker independent isolated word recognition using dynamic features of speech spectrum,” in IEEE Transactions on Acoustics, Speech, and Signal Processing, pp. 52–59, 1986.
    • (1986) IEEE Transactions on Acoustics, Speech, and Signal Processing , pp. 52-59
    • Furui, S.1
  • 12
    • 85017287487 scopus 로고
    • Linear discriminant analysis for improved large vocabulary speech recognition
    • R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large vocabulary speech recognition,” in Proc. ICASSP, vol. I, pp. 13–16, 1992.
    • (1992) Proc. ICASSP , vol.1 , pp. 13-16
    • Haeb-Umbach, R.1    Ney, H.2
  • 13
    • 0023572601 scopus 로고
    • Supervised learning of probability distributions by neural networks
    • D. Z. Anderson, Ed. American Institute of Physics
    • E. B. Baum and F. Wilczek, “Supervised learning of probability distributions by neural networks,” in Neural Information Processing Systems D. Z. Anderson, Ed. American Institute of Physics, 1988.
    • (1988) Neural Information Processing Systems
    • Baum, E.B.1    Wilczek, F.2
  • 14
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fougelman-Soulie and J. Hérault, Ed. Springer-Verlag
    • J. S. Bridle, “Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition,” in Neuro-computing: Algorithms, Architectures and Applicatations F. Fougelman-Soulie and J. Hérault, Ed. Springer-Verlag, 1989, pp. 227–236.
    • (1989) Neuro-computing: Algorithms, Architectures and Applicatations , pp. 227-236
    • Bridle, J.S.1
  • 16
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in Proc. ICASSP, pp. 1361–1364, 1990.
    • (1990) Proc. ICASSP , pp. 1361-1364
    • Gish, H.1
  • 17
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Computation, vol. 3, pp. 461–483, 1991.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 20
    • 0025659256 scopus 로고
    • Continuous speech recognition using multilayer perceptrons with hidden Markov models
    • N. Morgan and H. Bourlard, “Continuous speech recognition using multilayer perceptrons with hidden Markov models,” in Proc. ICASSP, pp. 413–416, 1990.
    • (1990) Proc. ICASSP , pp. 413-416
    • Morgan, N.1    Bourlard, H.2
  • 21
    • 85009890950 scopus 로고
    • Connectionist probability estimation in the Decipher speech recognition system
    • S. Renals, N. Morgan, M. Cohen, and H. Franco, “Connectionist probability estimation in the Decipher speech recognition system,” in Proc. ICASSP, vol. I, pp. 601–604, 1992.
    • (1992) Proc. ICASSP , vol.1 , pp. 601-604
    • Renals, S.1    Morgan, N.2    Cohen, M.3    Franco, H.4
  • 22
    • 0025385598 scopus 로고
    • ALPHA-NETS: A recurrent ‘neural’ network architecture with a hidden Markov model interpretation
    • Feb.
    • J. S. Bridle, “ALPHA-NETS: A recurrent ‘neural’ network architecture with a hidden Markov model interpretation,” Speech Communication, vol. 9, pp. 83–92, Feb. 1990.
    • (1990) Speech Communication , vol.9 , pp. 83-92
    • Bridle, J.S.1
  • 23
    • 0026404745 scopus 로고
    • An Alphanet approach to optimising input transformations for continuous speech recognition
    • J. S. Bridle and L. Dodd, “An Alphanet approach to optimising input transformations for continuous speech recognition,” in Proc. ICASSP. pp. 277–280, 1991.
    • (1991) Proc. ICASSP , pp. 277-280
    • Bridle, J.S.1    Dodd, L.2
  • 24
    • 0025592386 scopus 로고
    • Combining hidden Markov models and neural network classifiers
    • L. T. Niles and H. F. Silverman, “Combining hidden Markov models and neural network classifiers,” in Proc. ICASSP, pp. 417–420, 1990.
    • (1990) Proc. ICASSP , pp. 417-420
    • Niles, L.T.1    Silverman, H.F.2
  • 25
    • 0025592310 scopus 로고
    • Competitive training in hidden Markov models
    • Expanded in the technical report CUED/F-INFENG/TR.41, Cambridge University Engineering Department
    • S. J. Young, “Competitive training in hidden Markov models,” in Proc. ICASSP, pp. 681–684, 1990. Expanded in the technical report CUED/F-INFENG/TR.41, Cambridge University Engineering Department.
    • (1990) Proc. ICASSP , pp. 681-684
    • Young, S.J.1
  • 27
    • 0005803728 scopus 로고
    • Static and dynamic error propagation networks with application to speech coding
    • D. Z. Anderson, Ed. American Institute of Physics
    • A. J. Robinson and F. Fallside, “Static and dynamic error propagation networks with application to speech coding,” in Neural Information Processing Systems D. Z. Anderson, Ed. American Institute of Physics, 1988.
    • (1988) Neural Information Processing Systems
    • Robinson, A.J.1    Fallside, F.2
  • 28
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proc. IEEE, vol. 78, pp. 1550–1560, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 29
    • 84941528157 scopus 로고
    • A first look at phonetic discrimination using a connectionist architecture with recurrent links
    • SCIMP Working Paper No. 4/87, Communications Research Division, Institute for Defense Analyses, Princeton, NJ
    • G. Kuhn, “A first look at phonetic discrimination using a connectionist architecture with recurrent links,” SCIMP Working Paper No. 4/87, Communications Research Division, Institute for Defense Analyses, Princeton, NJ, 1987.
    • (1987)
    • Kuhn, G.1
  • 30
    • 0004162267 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • ICS Report 8805, Institute for Cognitive Science, University of California, San Diego, Oct.
    • R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” ICS Report 8805, Institute for Cognitive Science, University of California, San Diego, Oct. 1988.
    • (1988)
    • Williams, R.J.1    Zipser, D.2
  • 31
    • 0004262806 scopus 로고
    • Finding structure in time
    • Tech. Rep. CRL-8801, Center for Research in Language, UCSD, Apr.
    • J. L. Elman, “Finding structure in time,” Tech. Rep. CRL-8801, Center for Research in Language, UCSD, Apr. 1988.
    • (1988)
    • Elman, J.L.1
  • 32
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. H. Schmidhuber, “Learning complex, extended sequences using the principle of history compression,” Neural Computation, vol. 4, pp. 234–242, 1992.
    • (1992) Neural Computation , vol.4 , pp. 234-242
    • Schmidhuber, J.H.1
  • 33
    • 84941534062 scopus 로고
    • The state space and ‘ideal input’ representations of recurrent networks
    • M. Cooke, S. Beet, and M. Crawford, Eds. New York: John Wiley and Sons
    • T. Robinson, “The state space and ‘ideal input’ representations of recurrent networks,” in Visual Representations of Speech Signals, M. Cooke, S. Beet, and M. Crawford, Eds. New York: John Wiley and Sons, pp. 327–334, 1993.
    • (1993) Visual Representations of Speech Signals , pp. 327-334
    • Robinson, T.1
  • 36
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Networks, vol. 1, pp. 295–307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 37
    • 0003652104 scopus 로고
    • Optimization of the backpropagation algorithm for training multilayer perceptrons
    • W. Schiffmann, M. Joost, and R. Werner, “Optimization of the backpropagation algorithm for training multilayer perceptrons,” Tech. Rep., University of Koblenz, 1992.
    • (1992) Tech. Rep., University of Koblenz
    • Schiffmann, W.1    Joost, M.2    Werner, R.3
  • 39
    • 0040813706 scopus 로고
    • Several improvements to a recurrent error propagation network phone recognition system
    • Tech. Rep. CUED/F-INFENG/TR.82, Cambridge University Engineering Department, Sept.
    • T. Robinson, “Several improvements to a recurrent error propagation network phone recognition system,” Tech. Rep. CUED/F-INFENG/TR.82, Cambridge University Engineering Department, Sept. 1991.
    • (1991)
    • Robinson, T.1
  • 40
    • 0004141541 scopus 로고
    • Connectionist learning procedures
    • Tech. Rep. CMU-CS-87-115, Computer Science Department, Carnegie-Mellon University, June
    • G. E. Hinton, “Connectionist learning procedures,” Tech. Rep. CMU-CS-87-115, Computer Science Department, Carnegie-Mellon University, June 1987.
    • (1987)
    • Hinton, G.E.1
  • 41
    • 0006479994 scopus 로고
    • Connectionist probability estimation in HMM speech recognition
    • Tech. Rep. TR-92-081, International Computer Science Institute
    • S. Renals and N. Morgan, “Connectionist probability estimation in HMM speech recognition,” Tech. Rep. TR-92-081, International Computer Science Institute, 1992.
    • (1992)
    • Renals, S.1    Morgan, N.2
  • 42
    • 0000329355 scopus 로고
    • A recurrent error propagation network speech recognition system
    • July
    • T. Robinson and F. Fallside, “A recurrent error propagation network speech recognition system,” Computer Speech and Language, vol. 5, pp. 259–274. July 1991.
    • (1991) Computer Speech and Language , vol.5 , pp. 259-274
    • Robinson, T.1    Fallside, F.2
  • 45
    • 0027228742 scopus 로고
    • MMI training for continuous phoneme recognition on the TIMIT database
    • S. Kapadia, V. Valtchev, and S. J. Young, “MMI training for continuous phoneme recognition on the TIMIT database,” in Proc. ICASSP, 1993.
    • (1993) Proc. ICASSP
    • Kapadia, S.1    Valtchev, V.2    Young, S.J.3
  • 46
    • 0026991192 scopus 로고
    • Fast algorithms for phone classification and recognition using segment-based models
    • Dec.
    • V. V. Digalakis, M. Ostendorf, and J. R. Rohlicek, “Fast algorithms for phone classification and recognition using segment-based models,” IEEE Transactions on Signal Processing, vol. 40, pp. 2885–2896, Dec. 1992.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , pp. 2885-2896
    • Digalakis, V.V.1    Ostendorf, M.2    Rohlicek, J.R.3
  • 47
    • 84941528178 scopus 로고
    • New developments in phone recognition using an ergodic hidden Markov model
    • technical memorandum TM-11222-910829-12, AT&T Bell Laboratories
    • A. Ljolje, “New developments in phone recognition using an ergodic hidden Markov model,” technical memorandum TM-11222-910829-12, AT&T Bell Laboratories, 1991.
    • (1991)
    • Ljolje, A.1
  • 48
    • 0023776398 scopus 로고
    • The DARPA 1000-word Resource Management database for continuous speech recognition
    • P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallett, “The DARPA 1000-word Resource Management database for continuous speech recognition,” in Proc. ICASSP. 1988, pp. 651–654.
    • (1988) Proc. ICASSP , pp. 651-654
    • Price, P.1    Fisher, W.M.2    Bernstein, J.3    Pallett, D.S.4
  • 49
    • 0003721728 scopus 로고
    • Phonological structures for speech recognition
    • Ph.D. thesis, Computer Science Division, University of California at Berkeley, Apr.
    • M. H. Cohen, “Phonological structures for speech recognition,” Ph.D. thesis, Computer Science Division, University of California at Berkeley, Apr. 1989.
    • (1989)
    • Cohen, M.H.1
  • 54
    • 85009078709 scopus 로고
    • CDNN: A context dependent neural network for continuous speech recognition
    • H. Bourlard, N. Morgan, C. Wooters, and S. Renals, “CDNN: A context dependent neural network for continuous speech recognition,” in Proc. ICASSP, vol. II, pp. 349–352, 1992.
    • (1992) Proc. ICASSP , vol.2 , pp. 349-352
    • Bourlard, H.1    Morgan, N.2    Wooters, C.3    Renals, S.4
  • 55
    • 0000756554 scopus 로고
    • Context-dependent multiple distribution phonetic modelling with MLPs
    • C. L. Giles, S. J. Hanson, and J. D. Cowen, Eds. San Mateo, CA: Morgan Kaufmann
    • M. Cohen, H. Franco, N. Morgan, D. Rumelhart, and V. Abrash, “Context-dependent multiple distribution phonetic modelling with MLPs,” in Advances in Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson, and J. D. Cowen, Eds. San Mateo, CA: Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems 5
    • Cohen, M.1    Franco, H.2    Morgan, N.3    Rumelhart, D.4    Abrash, V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.