메뉴 건너뛰기




Volumn 5, Issue 2, 1994, Pages 255-266

Application of the Recurrent Multilayer Perceptron in Modeling Complex Process Dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; CURVE FITTING; LARGE SCALE SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; PROCESS CONTROL; SIGNAL FILTERING AND PREDICTION; SYSTEM STABILITY;

EID: 0028391673     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.279189     Document Type: Article
Times cited : (165)

References (29)
  • 1
    • 0141517757 scopus 로고
    • An Adaptive Lattice Architecture for Dynamic Multilayer Perceptrons
    • Back, A. D. and A. C. Tsoi, “An Adaptive Lattice Architecture for Dynamic Multilayer Perceptrons,” Neural Computation, vol. 4, pp. 922–931, 1992.
    • (1992) Neural Computation , vol.4 , pp. 922-931
    • Back, A.D.1    Tsoi, A.C.2
  • 2
    • 0025010309 scopus 로고
    • Use of Neural Nets for Dynamic Modeling and Control of Chemical Process Systems
    • Bhat, N. and McAvoy, T. J., “Use of Neural Nets for Dynamic Modeling and Control of Chemical Process Systems,” Computers and Chemical Engineering, vol. 14, No. 4/5, pp. 573–583, 1990.
    • (1990) Computers and Chemical Engineering , vol.14 , Issue.4-5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 3
    • 0019082388 scopus 로고
    • Identification of Non-linear Systems — A Survey
    • Billings, S. A., “Identification of Non-linear Systems — A Survey,” IEE Proc. D, Control Theory and Applications, vol. 127, No. 6, pp. 272–285, 1980.
    • (1980) IEE Proc. D, Control Theory and Applications , vol.127 , Issue.6 , pp. 272-285
    • Billings, S.A.1
  • 4
    • 0020783066 scopus 로고
    • Structure Detection and Model Validity Tests in the Identification of Non-linear Systems
    • Billings, S. A. and W. S. F. Voon, “Structure Detection and Model Validity Tests in the Identification of Non-linear Systems,” IEE Proc. D, Control Theory and Applications, vol. 130, No. 4, pp. 193–199, 1983.
    • (1983) IEE Proc. D, Control Theory and Applications , vol.130 , Issue.4 , pp. 193-199
    • Billings, S.A.1    Voon, W.S.F.2
  • 5
    • 0022752513 scopus 로고
    • Correlation based model validity tests for non-linear models
    • Billings, S. A. and W. S. F. Voon, “Correlation based model validity tests for non-linear models,” International Journal of Control, 44, 1, 235–244, 1986.
    • (1986) International Journal of Control , vol.44 , Issue.1 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2
  • 6
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
    • Billings, S. A., S. Chen and M. J. Korenberg, “Identification of MIMO non-linear systems using a forward-regression orthogonal estimator,” International Journal of Control, vol. 49, pp. 2157–2189, 1989.
    • (1989) International Journal of Control , vol.49 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 7
    • 0026190187 scopus 로고
    • Model validity tests for non—linear signal processing applications
    • Billings, S. A. and Q. H. Tao, “Model validity tests for non—linear signal processing applications,” International Journal of Control, 54, 1, 157–194, 1991.
    • (1991) International Journal of Control , vol.54 , Issue.1 , pp. 157-194
    • Billings, S.A.1    Tao, Q.H.2
  • 8
    • 0025448276 scopus 로고
    • Non-linear System Identification using Neural Networks
    • Chen, S., S. A. Billings and P. M. Grant, “Non-linear System Identification using Neural Networks,” International Journal of Control, vol. 51, No. 6, pp. 1191–1214, 1990.
    • (1990) International Journal of Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 9
    • 0025449162 scopus 로고
    • Parallel Recursive Prediction Error Algorithm for Training Layered Neural Networks
    • Chen, S., C. F. N. Cowan, S. A. Billings and P. M. Grant, “Parallel Recursive Prediction Error Algorithm for Training Layered Neural Networks,” International Journal of Control, vol. 51, No. 6, pp. 1215–1228, 1990.
    • (1990) International Journal of Control , vol.51 , Issue.6 , pp. 1215-1228
    • Chen, S.1    Cowan, C.F.N.2    Billings, S.A.3    Grant, P.M.4
  • 10
    • 0003909021 scopus 로고
    • Non-linear Digital Computer Control for the Steam Generator system in a Pressurized Water Reactor Plant
    • MIT, Cambridge, MA., Aug.
    • Choi, J. I., “Non-linear Digital Computer Control for the Steam Generator system in a Pressurized Water Reactor Plant,” Ph.D. Dissertation, Nuclear Eng. Dept., MIT, Cambridge, MA., Aug. 1987.
    • (1987) Ph.D. Dissertation, Nuclear Eng. Dept.
    • Choi, J.I.1
  • 11
    • 84941534090 scopus 로고
    • Non-linear Dynamic System Identification using Recurrent Neural Networks
    • Ph.D. Dissertation, Mechanical Eng. Dept., Texas A&M University, College Station, TX, Dec.
    • Chong, K. T. “Non-linear Dynamic System Identification using Recurrent Neural Networks,” Ph.D. Dissertation, Mechanical Eng. Dept., Texas A&M University, College Station, TX, Dec. 1992.
    • (1992)
    • Chong, K.T.1
  • 13
    • 0001657855 scopus 로고
    • Local Feedback Multilayer Networks
    • Frasconi, P., M. Gori and G. Soda, “Local Feedback Multilayer Networks,” Neural Computation, vol. 4, pp. 120–130, 1992.
    • (1992) Neural Computation , vol.4 , pp. 120-130
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 14
    • 0025464263 scopus 로고
    • Structure Identification of Non-linear Dynamic Systems—A Survey on Input/Output Approaches
    • Haber, R. and Unbehauen, H., “Structure Identification of Non-linear Dynamic Systems—A Survey on Input/Output Approaches,” Automatical vol. 26, No. 4A, pp. 651–677, 1990.
    • (1990) Automatical , vol.26 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 15
    • 0023104537 scopus 로고
    • Model selection and validation methods for non-linear systems
    • Leontaritis, I. J. and S. A. Billings, “Model selection and validation methods for non-linear systems,” International Journal of Control, 45, 1, 311–-341, 1987.
    • (1987) International Journal of Control , vol.45 , Issue.1
    • Leontaritis, I.J.1    Billings, S.A.2
  • 17
    • 0025241082 scopus 로고
    • Adaptation and Tracking in System Identification—A Survey
    • Ljung, L. and Gunnarsson, S., “Adaptation and Tracking in System Identification—A Survey,” Automatica, vol. 26, No. 1, pp. 7–21, 1990.
    • (1990) Automatica , vol.26 , Issue.1 , pp. 7-21
    • Ljung, L.1    Gunnarsson, S.2
  • 18
    • 0025889432 scopus 로고
    • Issues in System Identification
    • Ljung, L., “Issues in System Identification,” IEEE Control Systems Magazine, pp. 25–32, No. 1, 1991.
    • (1991) IEEE Control Systems Magazine , Issue.1 , pp. 25-32
    • Ljung, L.1
  • 19
    • 0026892165 scopus 로고
    • Gain-Scheduled Non-linear Control of U-Tube Steam Generator Water Level
    • Menon, S. K. and Parlos, A. G., “Gain-Scheduled Non-linear Control of U-Tube Steam Generator Water Level,” Nuclear Science and Engineering, vol. 111. No. 3, pp. 294—308, 1992.
    • (1992) Nuclear Science and Engineering , vol.111 , Issue.3 , pp. 294
    • Menon, S.K.1    Parlos, A.G.2
  • 20
    • 0025399567 scopus 로고
    • Identification and Control of Dynamical Systems Using Neural Networks
    • Narendra, K. S. and Parthasarathy, K., “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transactions on Neural Networks, vol. 1, No. 1, 1990.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1
    • Narendra, K.S.1    Parthasarathy, K.2
  • 21
    • 0026641826 scopus 로고
    • Non-linear Identification of Process Dynamics using Neural Networks
    • Parlos, A. G., A. F. Atiya, K. T. Chong and W. K. Tsai, “Non-linear Identification of Process Dynamics using Neural Networks,” Nuclear Technology, vol. 97, No. 1, pp. 79–95, 1992.
    • (1992) Nuclear Technology , vol.97 , Issue.1 , pp. 79-95
    • Parlos, A.G.1    Atiya, A.F.2    Chong, K.T.3    Tsai, W.K.4
  • 22
    • 84941529393 scopus 로고
    • Dynamic Gradient Descent Learning Algorithms for Enhanced Empirical Modeling of Power Plants
    • November, San Fracisco, CA
    • Parlos, A. G., Atiya, A. and Chong, K. T. “Dynamic Gradient Descent Learning Algorithms for Enhanced Empirical Modeling of Power Plants,” ANS Transactions, vol. 64, pp. 178–179, November 1991, San Fracisco, CA.
    • (1991) ANS Transactions , vol.64 , pp. 178-179
    • Parlos, A.G.1    Atiya, A.2    Chong, K.T.3
  • 23
    • 0026711830 scopus 로고
    • Recurrent Multilayer Perceptron for Non-linear System Identification
    • July, Seattle, WA
    • Parlos, A. G., Atiya, A., Chong, K. T., Tsai, W. K. and Fernandez, B., “Recurrent Multilayer Perceptron for Non-linear System Identification,” Proc. of the 1JCNN, vol. II, pp. 537–540, July 1991, Seattle, WA.
    • (1991) Proc. of the 1JCNN , vol.2 , pp. 537-540
    • Parlos, A.G.1    Atiya, A.2    Chong, K.T.3    Tsai, W.K.4    Fernandez, B.5
  • 25
    • 0003464265 scopus 로고
    • Dynamic Recurrent Neural Networks
    • Report CMU-CS-90-196, December
    • Pearlmutter, B.A., “Dynamic Recurrent Neural Networks,” Report CMU-CS-90-196, December 1990.
    • (1990)
    • Pearlmutter, B.A.1
  • 26
    • 0026626377 scopus 로고
    • Comparison of Four Neural Net Learning Methods for Dynamic System Identification
    • Qin, S.-Z, H.-T. Su and T. J. McAvoy, “Comparison of Four Neural Net Learning Methods for Dynamic System Identification,” IEEE Transactions on Neural Networks, vol. 3, No. 1, pp. 122–130, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.1 , pp. 122-130
    • Qin, S.-Z.1    Su, H.-T.2    McAvoy, T.J.3
  • 27
    • 0000646059 scopus 로고
    • Learning Internal Representation by Error Propagation
    • MIT Press, Cambridge, MA
    • Rumelhart, D., G. Hinton and R. Williams, “Learning Internal Representation by Error Propagation,” in Parallel Distributed Processing, vol. I, MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 28
    • 0026895542 scopus 로고
    • The Gamma Model—A New Neural Model for Temporal Processing
    • De Vries, B. and J. C. Principe, “The Gamma Model—A New Neural Model for Temporal Processing,” Neural Networks, vol. 5, pp. 565–576, 1992.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 29
    • 0001202594 scopus 로고
    • A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
    • Williams, R. J. and Zipser, D., “A Learning Algorithm for Continually Running Fully Recurrent Neural Networks,” Neural Computation, vol. 1, pp. 270–280, 1989.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.