-
1
-
-
0027641018
-
Fourier transforms of fractional order and their optical interpretation
-
H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163-169 (1993).
-
(1993)
Opt. Commun.
, vol.101
, pp. 163-169
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
2
-
-
0027652515
-
Fractional Fourier transformations and their optical implementation: I
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875-1881 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
3
-
-
84975555217
-
Fractional Fourier transformations and their optical implementation: II
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: II,” J. Opt. Soc. Am. A (to be published).
-
J. Opt. Soc. Am. A
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
4
-
-
77957689582
-
On Namiass fractional Fourier transform,”
-
A. C. McBride and F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159-175 (1987).
-
(1987)
IMA J. Appl. Math.
, vol.39
, pp. 159-175
-
-
McBride, A.C.1
Kerr, F.H.2
-
5
-
-
77958407025
-
The fractional Fourier transform and its application in quantum mechanics
-
V Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Its Appl. 25, 241-265 (1980).
-
(1980)
J. Inst. Math. Its Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
6
-
-
33747722913
-
Fourier transforms of fractional order and their optical interpretation
-
of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C
-
D. Mendlovic, H. M. Ozaktas, and A. W Lohmann, “Fourier transforms of fractional order and their optical interpretation,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 127-130.
-
(1993)
Optical Computing
, vol.7
, pp. 127-130
-
-
Mendlovic, D.1
Ozaktas, H.M.2
Lohmann, A.W.3
-
7
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
A. W Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. 10, 2181-2186 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
8
-
-
84975579869
-
The effect of propagation in graded index media on the Wigner distribution function and the equivalence of two definitions of the fractional Fourier transform
-
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “The effect of propagation in graded index media on the Wigner distribution function and the equivalence of two definitions of the fractional Fourier transform,” Appl. Opt. (to be published).
-
Appl. Opt.
-
-
Mendlovic, D.1
Ozaktas, H.M.2
Lohmann, A.W.3
-
10
-
-
21144470175
-
Generalized self- Fourier functions
-
G. Cincotti, F. Gori, and M. Santarsiero, “Generalized self- Fourier functions,” J. Phys. A 25, 1191-1194 (1992).
-
(1992)
J. Phys. A
, vol.25
, pp. 1191-1194
-
-
Cincotti, G.1
Gori, F.2
Santarsiero, M.3
-
11
-
-
49149141092
-
The Wigner distribution function and its optical production
-
H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32-38 (1980).
-
(1980)
Opt. Commun.
, vol.32
, pp. 32-38
-
-
Bartelt, H.O.1
Brenner, K.-H.2
Lohmann, A.W.3
-
12
-
-
0019054579
-
The Wigner distribution—a tool for time-frequency signal analysis; part 1: Continuous-time signals
-
T. A. C. M. Claasen and W. F. G. Mecklenbraucker, “The Wigner distribution—a tool for time-frequency signal analysis; part 1: continuous-time signals,” Philips J. Res. 35, 217-250 (1980).
-
(1980)
Philips J. Res.
, vol.35
, pp. 217-250
-
-
Claasen, T.A.C.M.1
Mecklenbraucker, W.F.G.2
-
13
-
-
0019067203
-
The Wigner distribution—a tool for time-frequency signal analysis; part 2: Discrete-time signals
-
T. A. C. M. Claasen, and W F. G. Mecklenbraucker, “The Wigner distribution—a tool for time-frequency signal analysis; part 2: discrete-time signals,” Philips J. Res. 35, 276-300 (1980).
-
(1980)
Philips J. Res.
, vol.35
, pp. 276-300
-
-
Claasen, T.A.C.M.1
Mecklenbraucker, W.F.G.2
-
14
-
-
84995448911
-
Relationship between two transforms: Radon-Wigner and fractional Fourier
-
of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C
-
A. W Lohmann and B. H. Soffer, “Relationship between two transforms: Radon-Wigner and fractional Fourier,” in Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 109.
-
(1993)
Annual Meeting
, vol.16
, pp. 109
-
-
Lohmann, A.W.1
Soffer, B.H.2
-
15
-
-
0003645230
-
-
2nd ed. (Academic, San Diego, Calif., Vol
-
A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed. (Academic, San Diego, Calif., 1982), Vol. 1.
-
(1982)
Digital Picture Processing
, vol.1
-
-
Rosenfeld, A.1
Kak, A.C.2
-
17
-
-
0027612334
-
Diffraction from a wavelet point of view
-
L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846-848 (1993).
-
(1993)
Opt. Lett.
, vol.18
, pp. 846-848
-
-
Onural, L.1
-
19
-
-
0027652516
-
Optical-coordinate transformation methods and optical interconnection architectures
-
D. Mendlovic and H. M. Ozaktas, “Optical-coordinate transformation methods and optical interconnection architectures,” Appl. Opt. 32, 5119-5124 (1993).
-
(1993)
Appl. Opt.
, vol.32
, pp. 5119-5124
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
20
-
-
36149036893
-
Self-Fourier functions
-
M. J. Caola, “Self-Fourier functions,” J. Phys. A 24, 1143-1144 (1991).
-
(1991)
J. Phys. A
, vol.24
, pp. 1143-1144
-
-
Caola, M.J.1
-
21
-
-
0010537546
-
Self-Fourier objects and other self-transform objects
-
A. W Lohmann and D. Mendlovic, “Self-Fourier objects and other self-transform objects,” J. Opt. Soc. Am. A 9, 2009-2012 (1992).
-
(1992)
J. Opt. Soc. Am. A
, vol.9
, pp. 2009-2012
-
-
Lohmann, A.W.1
Mendlovic, D.2
-
22
-
-
84975566521
-
-
Staudtstrasse 7, Erlangen, Germany (personal communication)
-
A. W Lohmann, University of Erlangen-Nürnberg, Staudtstrasse 7, Erlangen, Germany (personal communication).
-
University of Erlangen-Nürnberg
-
-
Lohmann, A.W.1
|