-
1
-
-
0001871334
-
Uncertainty principles in Fourier analysis
-
O. Shisa, Ed.). New York Academic
-
M. G. DeBruijn, “Uncertainty principles in Fourier analysis,” in Inequalities (O. Shisa, Ed.). New York: Academic, 1967, pp. 57–71.
-
(1967)
Inequalities
, pp. 57-71
-
-
DeBruijn, M.G.1
-
2
-
-
84939751170
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty-1
-
Jan.
-
D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty-1,” AT&T Bell Labs. Tech. J., vol. 40., pp. 43–63, Jan. 1961.
-
(1961)
AT&T Bell Labs. Tech. J
, vol.40
, pp. 43-63
-
-
Slepian, D.1
Pollak, H.O.2
-
3
-
-
84857887285
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty-2
-
Bell Labs. Tech. J., vol pp. Jan.
-
H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty-2,” AT&T Bell Labs. Tech. J., vol. 40, pp. 65–84, Jan. 1961.
-
(1961)
AT&T
, vol.40
, pp. 65-84
-
-
Landau, H.J.1
Pollak, H.O.2
-
4
-
-
84944487979
-
Prolate spheroidal wave functions, Fourier analysis and un-certainty-3: The dimension of the space of essentially time- and band-limited signals
-
Apr.
-
“Prolate spheroidal wave functions, Fourier analysis and un-certainty-3: The dimension of the space of essentially time- and band-limited signals,” AT&T Bell Labs. Tech. J., vol. 41, pp. 1295–1336, Apr. 1962.
-
(1962)
AT&T Bell Labs. Tech. J
, vol.41
, pp. 1295-1336
-
-
-
5
-
-
0024035735
-
Time-frequency localization operators: A geometric phase space approach
-
July
-
I. Daubechies, “Time-frequency localization operators: A geometric phase space approach,” IEEE Trans. Inform. Theory, vol. 34, pp. 605–612, July 1988.
-
(1988)
IEEE Trans. Inform. Theory
, vol.34
, pp. 605-612
-
-
Daubechies, I.1
-
6
-
-
0019054579
-
The Wigner distri-bution-A tool for time-frequency analysis-Part 1: Continuous time signals
-
T. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distri-bution-A tool for time-frequency analysis-Part 1: Continuous time signals,” Philips J. Res., vol. 35, pp. 217–250, 1980.
-
(1980)
Philips J. Res
, vol.35
, pp. 217-250
-
-
Claasen, T.C.M.1
Mecklenbrauker, W.F.G.2
-
7
-
-
0023750639
-
Maximum signal energy concentration in a time-frequency domain
-
P. Flandrin, “Maximum signal energy concentration in a time-frequency domain,” in Proc. IEEE ICASSP ‘88, 1988, pp. 2176–2179.
-
(1988)
Proc. IEEE ICASSP '88
, pp. 2176-2179
-
-
Flandrin, P.1
-
8
-
-
0026293062
-
Time-frequency analysis of linear signal spaces
-
May
-
F. Hlawatsch and W. Kozek, “Time-frequency analysis of linear signal spaces,” in Proc. ICASSP ‘91, May 1991, pp. 2045–2048.
-
(1991)
Proc. ICASSP '91
, pp. 2045-2048
-
-
Hlawatsch, F.1
Kozek, W.2
-
10
-
-
84966254168
-
On the role of the Heisenberg group in harmonic analysis
-
Sept.
-
R. Howe, “On the role of the Heisenberg group in harmonic analysis,” Bull. Amer. Math. Soc. (N.S.), vol. 3, pp. 821–843, Sept. 1980.
-
(1980)
Bull. Amer. Math. Soc. (N.S.)
, vol.3
, pp. 821-843
-
-
Howe, R.1
-
11
-
-
17444428329
-
Quantum mechanics and partial differential equations
-
__, “Quantum mechanics and partial differential equations,” J. Funct. Anal., vol. 38, pp. 188–254, 1980.
-
(1980)
J. Funct. Anal
, vol.38
, pp. 188-254
-
-
-
12
-
-
84878267844
-
A symbolic calculus for nilpotent groups
-
(G. Arsene, S. Stratila, A. Verona, and D. Voiculescu, Eds.) New York Pitman
-
“A symbolic calculus for nilpotent groups,” in Operator Algebras and Group Representations: Vol. 1 (G. Arsene, S. Stratila, A. Verona, and D. Voiculescu, Eds.). New York: Pitman, 1984, pp. 254–277.
-
(1984)
Operator Algebras and Group Representations: Vol. 1
, pp. 254-277
-
-
-
14
-
-
0024681555
-
Improved time-frequency representation. of multicomponent signals using exponential kernels
-
H. I. Choi and W. J. Williams, “Improved time-frequency representation. of multicomponent signals using exponential kernels,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, p. 1, 1989.
-
(1989)
IEEE Trans. Acoust. Speech Signal Processing
, vol.37
, pp. 1
-
-
Choi, H.I.1
Williams, W.J.2
-
15
-
-
0345164144
-
Wigner distribution function: Relation to short-term spectral estimation, smoothing, and performance in noise
-
Naval Underwater Syst. Cent. Feb.
-
A. H. Nuttall, “Wigner distribution function: Relation to short-term spectral estimation, smoothing, and performance in noise,” NUSC Tech. Rep. 8225, Naval Underwater Syst. Cent., Feb. 1988.
-
(1988)
NUSC Tech. Rep
, pp. 8225
-
-
Nuttall, A.H.1
-
16
-
-
0345164144
-
The Wigner distribution function with minimum spread
-
Naval Underwater Syst. Cent. June
-
The Wigner distribution function with minimum spread,” NUSC Tech. Rep. 8317, Naval Underwater Syst. Cent., June 1988.
-
(1988)
NUSC Tech. Rep
, pp. 8317
-
-
-
17
-
-
0020189541
-
Spectrum estimation and harmonic analysis
-
D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 70, pp. 1055–1096, 1982.
-
(1982)
Proc. IEEE
, vol.70
, pp. 1055-1096
-
-
Thomson, D.J.1
-
18
-
-
0026284926
-
Time-frequency filter banks with perfect reconstruction
-
May
-
W. Kozek and F. Hlawatsch, “Time-frequency filter banks with perfect reconstruction,” in Proc. ICASSP ‘91, May 1991, pp. 2049–2052.
-
(1991)
Proc. ICASSP '91
, pp. 2049-2052
-
-
Kozek, W.1
Hlawatsch, F.2
-
19
-
-
84939734176
-
Time-frequency representation of linear time-varying systems using the Weyl symbol
-
Sept
-
“Time-frequency representation of linear time-varying systems using the Weyl symbol,” in Proc. IEE Sixth Int. Conf.Digital Signal Processing Commun., Sept. 1991.
-
(1991)
Proc. IEE Sixth Int. Conf.Digital Signal Processing Commun
-
-
-
20
-
-
0026938327
-
Time-frequency signal processing based on the Wigner-Wey1 framework
-
Oct.
-
W. Kozek, “Time-frequency signal processing based on the Wigner-Wey1 framework,” EURASIP Signal Processing, vol. 29, pp. 77–92, Oct. 1992.
-
(1992)
EURASIP Signal Processing
, vol.29
, pp. 77-92
-
-
Kozek, W.1
-
21
-
-
0024777625
-
Wigner weight functions and Weyl symbols of non-negative definite linear operators
-
A. J. E. M. Janssen, “Wigner weight functions and Weyl symbols of non-negative definite linear operators,” Philips J. Res., vol. 44, pp. 2049–2052, 1989.
-
(1989)
Philips J. Res
, vol.44
, pp. 2049-2052
-
-
Janssen, A.1
-
22
-
-
21144462814
-
Time frequency localization via the Weyl correpsondence
-
Sept.
-
J. Ramanathan and P. Topiwala, “Time frequency localization via the Weyl correpsondence,” SIAM J. Math. Anal., vol. 24, no. 5, pp. 1378–1393, Sept. 1993.
-
(1993)
SIAM J. Math. Anal
, vol.24
, Issue.5
, pp. 1378-1393
-
-
Ramanathan, J.1
Topiwala, P.2
-
23
-
-
0141582037
-
Generalized phase space distributions
-
May
-
L. Cohen, “Generalized phase space distributions,” J. Math. Phys., vol. 7, pp. 781–786, May 1966.
-
(1966)
J. Math. Phys
, vol.7
, pp. 781-786
-
-
Cohen, L.1
-
24
-
-
36749108415
-
Quantization problem and variational principle in the phase-space space formulation of quantum mechanics
-
Oct.
-
__, “Quantization problem and variational principle in the phase-space space formulation of quantum mechanics,” J. Math. Phys., vol. 17, pp. 1863–1866, Oct. 1976.
-
(1976)
J. Math. Phys.
, vol.17
, pp. 1863-1866
-
-
-
25
-
-
0024705330
-
Time-frequency distributions-A review
-
July
-
Time-frequency distributions-A review,” Proc. IEEE, vol. 77, pp. 941–981, July 1989.
-
(1989)
Proc. IEEE
, vol.77
, pp. 941-981
-
-
-
27
-
-
0026407473
-
A general approach for obtaining joint representations in signal analysis and an application to scale
-
L. Cohen, “A general approach for obtaining joint representations in signal analysis and an application to scale,” in Proc. SPIE Adv. Signal Processing, Algorithms Implementations 2, 1991, pp. 109–133, vol. 1566.
-
(1991)
Proc. SPIE Adv. Signal Processing, Algorithms Implementations 2
, pp. 109-133
-
-
Cohen, L.1
-
28
-
-
77957145264
-
Scale and inverse frequency representations
-
Mar.
-
__, “Scale and inverse frequency representations,” in Role Wavelets Signal Processing Represent., pp. 118–129, Mar. 1992.
-
(1992)
Role Wavelets Signal Processing Represent
, pp. 118-129
-
-
-
29
-
-
84939760993
-
A general approach for obtaining joint representations in signal analysis
-
__, “A general approach for obtaining joint representations in signal analysis,” to be published.
-
to be published
-
-
-
30
-
-
84939722057
-
The scale representation
-
__, “The scale representation,” to be published.
-
to be published
-
-
-
31
-
-
84981761181
-
An algebra of pseudodifferential operators
-
J. Kohn and L. Nirenberg, “An algebra of pseudodifferential operators,” Comm. Pure Appl. Math., vol. 18, pp. 169–305, 19 6 5.
-
(1965)
Comm. Pure Appl. Math
, vol.18
, pp. 169-305
-
-
Kohn, J.1
Nirenberg, L.2
-
32
-
-
84980189803
-
The Weyl calculus of pseudodifferential operators
-
L. Hormander, “The Weyl calculus of pseudodifferential operators,” Comm. Pure Appl. Math., vol. 32, pp. 359–443, 1979.
-
(1979)
Comm. Pure Appl. Math
, vol.32
, pp. 359-443
-
-
Hormander, L.1
-
33
-
-
84968470266
-
The uncertainty principle
-
Sept.
-
C. L. Fefferman, “The uncertainty principle,” Bull. Amer. Math. Soc. (N.S.), vol. 9, pp. 129–206, Sept. 1983.
-
(1983)
Bull. Amer. Math. Soc. (N.S.)
, vol.9
, pp. 129-206
-
-
Fefferman, C.L.1
-
34
-
-
0001533804
-
The Weyl functional calculus
-
R. F. V. Anderson, “The Weyl functional calculus,” J. Funct. Anal., vol. 4, pp. 240–267, 1969.
-
(1969)
J. Funct. Anal
, vol.4
, pp. 240-267
-
-
Anderson, R.F.V.1
-
35
-
-
0001343902
-
On the Weyl functional calculus
-
R. F. V. Anderson, “On the Weyl functional calculus,” J. Funct. Anal., vol. 6, pp. 110–115, 1970.
-
(1970)
J. Funct. Anal
, vol.6
, pp. 110-115
-
-
Anderson, R.F.V.1
-
36
-
-
2342440417
-
The multiplicative Weyl functional calculus
-
The multiplicative Weyl functional calculus,” J. Funct. Anal., vol. 9, pp. 423–440, 1972.
-
(1972)
J. Funct. Anal
, vol.9
, pp. 423-440
-
-
-
37
-
-
0002068855
-
Functions of several self-adjoint operators
-
M. E. Taylor, “Functions of several self-adjoint operators,” Proc. Amer. Math. Soc., vol. 19, pp. 91–98, 1968.
-
(1968)
Proc. Amer. Math. Soc
, vol.19
, pp. 91-98
-
-
Taylor, M.E.1
-
38
-
-
0001855829
-
Operants: A functional calculus for non-commuting operators
-
(F. E. Browder, Ed.). New York
-
E. Nelson, “Operants: A functional calculus for non-commuting operators,” in Functional Analysis and Related Fields, (F. E. Browder, Ed.). New York: 1970, 172–187.
-
(1970)
Functional Analysis and Related Fields
, pp. 172-187
-
-
Nelson, E.1
-
39
-
-
0001458386
-
The Wigner distribution-A tool for time-frequency analysis-Part 3: Relations with other time-frequency signal transformations
-
T. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution-A tool for time-frequency analysis-Part 3: Relations with other time-frequency signal transformations,” Philips J. Res., vol. 35, pp. 372–389, 1980.
-
(1980)
Philips J. Res
, vol.35
, pp. 372-389
-
-
Claasen, T.C.M.1
Mecklenbrauker, W.F.G.2
-
41
-
-
85032751591
-
Linear and quadratic time-frequency frequency representations
-
Apr.
-
F. Hlawatsch and G. F. Boudreaux-Bartles, “Linear and quadratic time-frequency frequency representations,” IEEE Signal Processing Mag., vol. 9, pp. 21–67, Apr. 1992.
-
(1992)
IEEE Signal Processing Mag
, vol.9
, pp. 21-67
-
-
Hlawatsch, F.1
Boudreaux-Bartles, G.F.2
-
42
-
-
0025661541
-
Time-frequency sub-spaces and their application to time-varying filtering
-
Apr.
-
F. Hlawatsch, W. Kozek, and W. Krattenthaler, “Time-frequency sub-spaces and their application to time-varying filtering,” in Proc. ICASSP ‘90, Apr. 1990, pp. 1607–1610.
-
(1990)
Proc. ICASSP '90
, pp. 1607-1610
-
-
Hlawatsch, F.1
Kozek, W.2
Krattenthaler, W.3
-
43
-
-
0025591233
-
Time-frequency concentrated basis functions
-
Apr.
-
R. G. Shenoy and T. W. Parks, “Time-frequency concentrated basis functions,” in Proc. ICASSP ‘90, Apr. 1990, 2459–2462.
-
(1990)
Proc. ICASSP '90
, pp. 2459-2462
-
-
Shenoy, R.G.1
Parks, T.W.2
-
45
-
-
0002379655
-
Mathematical aspects of the Weyl correspondence
-
J. C. T. Pool, “Mathematical aspects of the Weyl correspondence,” J. Math. Phys, vol. 7, pp. 66–76, 1966.
-
(1966)
J. Math. Phys
, vol.7
, pp. 66-76
-
-
Pool, J.C.T.1
-
46
-
-
0000910767
-
A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence
-
N. G. D. Bruijn, “A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence,” Nieuw Arch. Wisk. (4), vol. 3, no. 21, pp. 205–280, 1973.
-
(1973)
Nieuw Arch. Wisk. (4)
, vol.3
, Issue.21
, pp. 205-280
-
-
Bruijn, N.G.D.1
-
47
-
-
0000631775
-
An algebra of pseudodifferential ferential operators and quantum mechanics in phase space
-
A. Grossman, G. Loupias, and E. M. Stein, “An algebra of pseudodifferential ferential operators and quantum mechanics in phase space,” Ann. Inst. Fourier (Grenoble), vol. 18, no. 2, 343–368, 1968.
-
(1968)
Ann. Inst. Fourier (Grenoble)
, vol.18
, Issue.2
, pp. 343-368
-
-
Grossman, A.1
Loupias, G.2
Stein, E.M.3
-
48
-
-
34648852150
-
Time-varying networks-1
-
L. Zadeh, “Time-varying networks-1,” in Proc. IRE, pp. 1488–1503, 1961.
-
(1961)
Proc. IRE
, pp. 1488-1503
-
-
Zadeh, L.1
-
49
-
-
84933380749
-
Frequency analysis of variable networks
-
__. “Frequency analysis of variable networks,” Proc. IRE, vol. 38, 1950, pp. 291–299.
-
(1950)
Proc. IRE
, vol.38
, pp. 291-299
-
-
-
50
-
-
0009029012
-
Transforms for operators and symplectic automorphisms over a locally compact Abelian group
-
I. E. Segal, “Transforms for operators and symplectic automorphisms over a locally compact Abelian group,” Math. Scand., vol. 13, pp. 31–43, 1963. [51] O. Rioul and P. Flandrin, “Time-scale distributions: A general class extending the wavelet transform,” IEEE Trans. Signal Processing, vol. 46, pp. 1746–1757, May 1992.
-
(1963)
Math. Scand
, vol.13
, pp. 31-43
-
-
Segal, I.E.1
-
51
-
-
0026899936
-
Time-scale distributions: A general class extending the wavelet transform
-
May
-
O. Rioul and P. Flandrin “Time-scale distributions: A general class extending the wavelet transform”, IEEE Trans. Signal Processing, vol. 46, pp. 1746–1757, May 1992
-
(1992)
IEEE Trans. Signal Processing
, vol.46
, pp. 1746-1757
-
-
Rioul, O.1
Flandrin, P.2
-
53
-
-
84964771452
-
Time-frequency perspectives: The chirplet transform
-
Mar.
-
S. Mann and S. Haykin, “Time-frequency perspectives: The chirplet transform,” in Proc. IEEE ICASSP ‘92, Mar. 1992.
-
(1992)
Proc. IEEE ICASSP '92
-
-
Mann, S.1
Haykin, S.2
-
54
-
-
0010872738
-
n-widths and optimal interpolation of time and band. limited functions
-
New York Plenum
-
A. A. Melkman, “n-widths and optimal interpolation of time and band. limited functions,” in Optimal Estimation in Approximation Theory. New York: Plenum, 1976, pp. 55–68.
-
(1976)
Optimal Estimation in Approximation Theory
, pp. 55-68
-
-
Melkman, A.A.1
-
55
-
-
0001897992
-
Optimal estimation of linear operators in Hilbert spaces from inaccurate data
-
Feb.
-
A. A. Mellunan and C. A. Michelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data,” SIAM J. Numer. Anal., vol. 16, pp. 87–105, Feb. 1979.
-
(1979)
SIAM J. Numer. Anal
, vol.16
, pp. 87-105
-
-
Mellunan, A.A.1
Michelli, C.A.2
-
56
-
-
0010888205
-
The Weyl transform and Laguerre polynomials
-
J. Peetre, “The Weyl transform and Laguerre polynomials,” Le Mathe-matiche matiche (Catania), vol. 27, pp. 301–323, 1972.
-
(1972)
Le Mathe-matiche matiche (Catania)
, vol.27
, pp. 301-323
-
-
Peetre, J.1
-
57
-
-
36549092519
-
Transforms associated to square integrable group representations 1: General results
-
Oct.
-
A Grossman, J. Morlet, and T. Paul, “Transforms associated to square integrable group representations 1: General results,” J. Math. Phys., vol. 26, pp. 2473–2479, Oct. 1985.
-
(1985)
J. Math. Phys
, vol.26
, pp. 2473-2479
-
-
Grossman, A.1
Morlet, J.2
Paul, T.3
-
58
-
-
0141582037
-
Generalized phase-space distribution functions
-
L. Cohen, “Generalized phase-space distribution functions,” J. Math. Phys. vol. 7, pp. 781–786, 1966.
-
(1966)
J. Math. Phys
, vol.7
, pp. 781-786
-
-
Cohen, L.1
-
59
-
-
0019067203
-
The Wigner distribution'A tool for time-frequency analysis'Part 2: Discrete time signals
-
T. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—A tool for time-frequency analysis—Part 2: Discrete time signals,” Philips J. Res., vol. 35, pp. 276–300, 1980.
-
(1980)
Philips J. Res
, vol.35
, pp. 276-300
-
-
Claasen, T.C.M.1
Mecklenbrauker, W.F.G.2
-
61
-
-
0001014975
-
Radar ambiguity functions and group theory
-
May
-
L. Auslander and R. Tolimieri, “Radar ambiguity functions and group theory,” SIAM J. Math. Anal., vol. 16, pp. 577–601, May 1985.
-
(1985)
SIAM J. Math. Anal
, vol.16
, pp. 577-601
-
-
Auslander, L.1
Tolimieri, R.2
-
62
-
-
0021519294
-
Characterizing the radar ambiguity functions
-
Nov.
-
Characterizing the radar ambiguity functions,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 832–836, Nov. 1984.
-
(1984)
IEEE Trans. Inform. Theory
, vol.IT-30
, pp. 832-836
-
-
-
65
-
-
0003962321
-
Abstract Harmonic Analysis 1
-
New York Springer-Verlag
-
E. Hewitt and K. A. Ross, Abstract Harmonic Analysis 1. New York: Springer-Verlag, 1963.
-
-
-
Hewitt, E.1
Ross, K.A.2
-
67
-
-
0000870139
-
Transforms associated to square integrable group representations 2: Examples
-
A. Grossman, J. Monet, and T. Paul, “Transforms associated to square integrable group representations 2: Examples,” Ann. Inst. H. Poincare. Phys. Theor., vol. 45, no. 3, pp. 293–309, 1986.
-
(1986)
Ann. Inst. H. Poincare. Phys. Theor
, vol.45
, Issue.3
, pp. 293-309
-
-
Grossman, A.1
Monet, J.2
Paul, T.3
-
68
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
Sept.
-
I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inform. Theory, vol. 36, pp. 961–1005, Sept. 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 961-1005
-
-
Daubechies, I.1
-
69
-
-
34250299331
-
Coherent state representations of nilpotent Lie groups
-
H. Moscovici, “Coherent state representations of nilpotent Lie groups,” Comm. Math. Phys., vol. 54, pp. 63–68, 1977.
-
(1977)
Comm. Math. Phys
, vol.54
, pp. 63-68
-
-
Moscovici, H.1
-
70
-
-
0012897883
-
Coherent states and square integrable representations
-
H. Moscovici and A. Verona, “Coherent states and square integrable representations,” Ann. Inst. H. Poincare. Phys. Theor.: Section A, vol. 29, no. 2, pp. 139–156, 1978.
-
(1978)
Ann. Inst. H. Poincare. Phys. Theor.: Section A
, vol.29
, pp. 139-156
-
-
Moscovici, H.1
Verona, A.2
-
71
-
-
77957162138
-
Group representations and optimal recovery in signal modeling
-
R. G. Shenoy, “Group representations and optimal recovery in signal modeling,” Ph.D. dissertation, Cornell Univ., Ithaca, NY, 1991.
-
(1991)
Ph.D. dissertation, Cornell Univ., Ithaca, NY
-
-
Shenoy, R.G.1
-
72
-
-
0000365779
-
Time-frequency localisation operators-A geometric phase space approach: 2: The use of dilations
-
I. Daubechies and T. Paul, “Time-frequency localisation operators-A geometric phase space approach: 2: The use of dilations,” Inverse Problems, vol. 4, pp. 661–680, 1988.
-
(1988)
Inverse Problems
, vol.4
, pp. 661-680
-
-
Daubechies, I.1
Paul, T.2
-
74
-
-
84968515233
-
Five short stories about the cardinal series
-
J. R. Higgins, “Five short stories about the cardinal series,” Bull. Amer. Math. Soc. (N.S.), vol. 12, no. 1, pp. 45-89, 1985.
-
(1985)
Bull. Amer. Math. Soc. (N.S.)
, vol.12
, Issue.1
, pp. 45-89
-
-
Higgins, J.R.1
-
75
-
-
0002843453
-
Fourier analysis and the sampling theorem
-
M. M. Dodson and A. M. Silva, “Fourier analysis and the sampling theorem,” Proc. Royal Irish Acad. Sect. A, vol. 85, no. 1, pp. 81-108, 1985.
-
(1985)
Proc. Royal Irish Acad. Sect. A
, vol.85
, Issue.1
, pp. 81-108
-
-
Dodson, M.M.1
Silva, A.M.2
-
76
-
-
84971195216
-
A Note on Whittaker cardinal series in harmonic analysis
-
M. M. Dodson, A. M. Silva, and V. Soucek, “A Note on Whittakers cardinal series in harmonic analysis,” Proc. Edinburgh Math. Soc. (2), vol. 29, pp. 349-357, 1986.
-
(1986)
Proc. Edinburgh Math. Soc(2)
, vol.29
, pp. 349-357
-
-
Dodson, M.M.1
Silva, A.M.2
Soucek, V.3
-
77
-
-
34250594733
-
Sur certains groupes oprateurs unitaires
-
A. Weil,“Sur certains groupes oprateurs unitaires,” Acta Math., vol. 111, pp. 143-211, 1964.
-
(1964)
Acta Math
, vol.111
, pp. 143-211
-
-
Weil, A.1
-
79
-
-
84939751203
-
General Eigenfunction Expansions and Unitary Representations of Topological Groups
-
K. Maurin, General Eigenfunction Expansions and Unitary Representations of Topological Groups. Polish Scientific, 1968.
-
(1968)
Polish Scientific
-
-
Maurin, K.1
|