메뉴 건너뛰기




Volumn 2, Issue 1, 1994, Pages 64-73

Rule-Base Structure Identification in an Adaptive-Network-Based Fuzzy Inference System

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FUZZY SETS; KALMAN FILTERING;

EID: 0028370964     PISSN: 10636706     EISSN: 19410034     Source Type: Journal    
DOI: 10.1109/91.273127     Document Type: Article
Times cited : (156)

References (35)
  • 2
    • 38249037027 scopus 로고
    • Summarizing and propagating uncertain information with triangular norms
    • P. P. Bonissone, “Summarizing and propagating uncertain information with triangular norms,” Int. J. Approximate Reasoning, vol. 1, pp. 71–101, 1987.
    • (1987) Int. J. Approximate Reasoning , vol.1 , pp. 71-101
    • Bonissone, P.P.1
  • 3
    • 0024875693 scopus 로고
    • Parallel rule-based fuzzy inference on mesh-connected systolic arrays
    • M. A. Eshera and S. C. Barash, “Parallel rule-based fuzzy inference on mesh-connected systolic arrays,” IEEE Expert, vol. 4, no. 4, pp. 27–35, 1989.
    • (1989) IEEE Expert , vol.4 , Issue.4 , pp. 27-35
    • Eshera, M.A.1    Barash, S.C.2
  • 4
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM Trans. Math. Software, vol. 3, no. 3, pp. 209–226, 1977.
    • (1977) ACM Trans. Math. Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, H.1    Bentley, J.L.2    Finkel, R.A.3
  • 5
    • 85121203554 scopus 로고
    • Fuzzy modeling using generalized neural networks and Kalman filter algorithm
    • J. S. Jang, “Fuzzy modeling using generalized neural networks and Kalman filter algorithm,” in Proc. 9th National Conf. Artificial Intel-ligence, 1991, pp. 762–767.
    • (1991) Proc. 9th National Conf. Artificial Intel-ligence , pp. 762-767
    • Jang, J.S.1
  • 6
    • 0021521060 scopus 로고
    • ‘Softer’ optimization and control models via fuzzy linguistic quantifiers
    • J. Kacprzyk and R. R. Yager, “ ‘Softer’ optimization and control models via fuzzy linguistic quantifiers,” Inform. Sci., vol. 34, pp. 157–178, 1984.
    • (1984) Inform. Sci , vol.34 , pp. 157-178
    • Kacprzyk, J.1    Yager, R.R.2
  • 7
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Mar.
    • R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME. J. Basic Engineering, pp. 35–45, Mar. 1960.
    • (1960) Trans. ASME. J. Basic Engineering , pp. 35-45
    • Kalman, R.E.1
  • 8
    • 0003052378 scopus 로고
    • Applying genetics to fuzzy logic
    • C. Karr, “Applying genetics to fuzzy logic,” A1 Expert, vol. 6, no. 3, pp. 38-43, 1991.
    • (1991) A1 Expert , vol.6 , Issue.3 , pp. 38-43
    • Karr, C.1
  • 9
    • 0003052380 scopus 로고
    • Genetic algorithms for fuzzy controllers
    • C. Karr, “Genetic algorithms for fuzzy controllers,” AI Expert, vol. 6, no. 2, pp. 26–33, 1991.
    • (1991) AI Expert , vol.6 , Issue.2 , pp. 26-33
    • Karr, C.1
  • 10
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: Fuzzy logic controller
    • C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller,” IEEE Trans. Syst., Man, Cyber., vol. 20, no. 2, pp. 404–435, 1990.
    • (1990) IEEE Trans. Syst., Man, Cyber , vol.20 , Issue.2 , pp. 404-435
    • Lee, C.C.1
  • 11
    • 0025385501 scopus 로고
    • Implementing fuzzy rule-based systems on silicon chips
    • M.-H. Lim, “Implementing fuzzy rule-based systems on silicon chips,” IEEE Expert, vol. 5, no. 1, pp. 31—46, 1990.
    • (1990) IEEE Expert , vol.5 , Issue.1 , pp. 31-46
    • Lim, M.-H.1
  • 13
    • 0343041788 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • Dept. Computer Science and Institute of Cognitive Science, University of Colorado
    • M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trimming the fat from a network via relevance assessment,” Tech. Rep. CU-CS-421-89, Dept. Computer Science and Institute of Cognitive Science, University of Colorado, 1989.
    • (1989) Tech. Rep. CU-CS-421-89
    • Mozer, M.C.1    Smolensky, P.2
  • 14
    • 0013176975 scopus 로고
    • Fuzzy relation equations theory as a basis of fuzzy modelling: An overview
    • A. Di Nola, W. Pedrycz, S. Sessa, and E. Sanchez, “Fuzzy relation equations theory as a basis of fuzzy modelling: An overview,” Fuzzy Sets and Systems, vol. 40, 415–429, 1991.
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 415-429
    • Di Nola, A.1    Pedrycz, W.2    Sessa, S.3    Sanchez, E.4
  • 15
    • 0041674458 scopus 로고
    • Geometric learning algorithms
    • International Computer Science Institute
    • S. M. Omohundro, “Geometric learning algorithms,” Tech. Rep. TR-89-041, International Computer Science Institute, 1989.
    • (1989) Tech. Rep. TR-89-041
    • Omohundro, S.M.1
  • 16
    • 0001689472 scopus 로고
    • Similarity relations, fuzzy partitions, and fuzzy ordering
    • S. Ovchinnikov, “Similarity relations, fuzzy partitions, and fuzzy ordering,” Fuzzy Sets and Systems, vol. 40, pp. 107–126, 1991.
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 107-126
    • Ovchinnikov, S.1
  • 17
    • 16444372256 scopus 로고
    • On fuzzy classifications
    • R. R. Yager, Ed. New York: Pergamon
    • S. V. Ovchinnikov and T. Riera, “On fuzzy classifications,” in Fuzzy Set and Possibility Theory, R. R. Yager, Ed. New York: Pergamon, 1982, pp. 119–132.
    • (1982) Fuzzy Set and Possibility Theory , pp. 119-132
    • Ovchinnikov, S.V.1    Riera, T.2
  • 18
    • 0026417976 scopus 로고
    • Fuzzy modelling: Fundamentals, construction and evaluation
    • W. Pedrycz, “Fuzzy modelling: Fundamentals, construction and evaluation,” Fuzzy Sets and Systems, vol. 41, pp. 1–15, 1991.
    • (1991) Fuzzy Sets and Systems , vol.41 , pp. 1-15
    • Pedrycz, W.1
  • 19
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 21
    • 0014810305 scopus 로고
    • Numerical methods for fuzzy clustering
    • E. H. Ruspini, “Numerical methods for fuzzy clustering,” Inform Sci., vol. 2, pp. 319–350, 1970.
    • (1970) Inform Sci , vol.2 , pp. 319-350
    • Ruspini, E.H.1
  • 22
    • 0003162414 scopus 로고
    • Recent development in fuzzy clustering
    • New York: North Holland
    • E. H. Ruspini, “Recent development in fuzzy clustering,” in Fuzzy Set and Possibility Theory. New York: North Holland, 1982, pp. 133–147.
    • (1982) Fuzzy Set and Possibility Theory , pp. 133-147
    • Ruspini, E.H.1
  • 23
    • 0002678486 scopus 로고
    • On the semantics of fuzzy logic
    • E. H. Ruspini, “On the semantics of fuzzy logic,” Int. J. Approximate Reasoning, vol. 5, pp. 45–88, 1991.
    • (1991) Int. J. Approximate Reasoning , vol.5 , pp. 45-88
    • Ruspini, E.H.1
  • 24
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, pp. 15–33, 1988.
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 25
  • 26
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst. Man, Cyber., vol. SMC-15, no. 1, pp. 116–132, 1985.
    • (1985) IEEE Trans. Syst. Man, Cyber , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 28
    • 44949280565 scopus 로고
    • Connectives and quantifiers in fuzzy logic
    • R. R. Yager, “Connectives and quantifiers in fuzzy logic,” Fuzzy Sets and Systems, vol. 40, pp. 39–75, 1991.
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 39-75
    • Yager, R.R.1
  • 31
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning
    • L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning,” Inform. Sci., vol. 8, pp. 199–249, 1975.
    • (1975) Inform. Sci , vol.8 , pp. 199-249
    • Zadeh, L.A.1
  • 32
    • 0002290701 scopus 로고
    • Fuzzy sets and their application to pattern classification and clustering analysis
    • J. van Ryzin, Ed. New York: Academic Press
    • L. A. Zadeh, “Fuzzy sets and their application to pattern classification and clustering analysis,” in Classification and Clustering, J. van Ryzin, Ed. New York: Academic Press, 1978, pp. 251–299.
    • (1978) Classification and Clustering , pp. 251-299
    • Zadeh, L.A.1
  • 33
    • 84941522481 scopus 로고    scopus 로고
    • unpublished lectures. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley
    • L. A. Zadeh, unpublished lectures. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 1991.
    • Zadeh, L.A.1
  • 35
    • 0041382198 scopus 로고
    • Latent connectives in human decision making
    • H. J. Zimmermann and P. Zysno, “Latent connectives in human decision making,” Fuzzy Sets and Systems, vol. 4, pp. 37–51, 1980.
    • (1980) Fuzzy Sets and Systems , vol.4 , pp. 37-51
    • Zimmermann, H.J.1    Zysno, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.