메뉴 건너뛰기




Volumn 7, Issue 4, 1994, Pages 609-628

On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size

Author keywords

Convergence rate; Kernel regression estimator; Parzen window estimator; Radial basis function networks; Receptive field size; Statistical consistency; Universal approximation

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ERRORS; ESTIMATION; LEAST SQUARES APPROXIMATIONS; NUMERICAL ANALYSIS; PROBABILITY; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 0028341934     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/0893-6080(94)90040-X     Document Type: Article
Times cited : (116)

References (45)
  • 18
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik1
  • 29
  • 41
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks that can learn arbitrary mappings
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White1
  • 44
    • 84913007978 scopus 로고
    • On radial basis function nets and kernel regression: Approximation ability, convergence rate and receptive field size
    • Harvard University, Harvard Robotics Laboratory
    • (1992) Tech. Rep. No. 92-4
    • Xu1    Krzyżak2    Yuille3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.