-
1
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, pp. 674-693, 1989.
-
(1989)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
3
-
-
0000847616
-
A modified Franklin system and higher order systems of Rnas unconditional bases for Hardy spaces
-
Wadsworth Math. Series
-
J. Stromberg, “A modified Franklin system and higher order systems of R n as unconditional bases for Hardy spaces,” Conf. in harmonic analysis in honor of A. Zygmund, Wadsworth Math. Series, vol. 2, pp. 475-493.
-
Conf. in harmonic analysis in honor of A. Zygmund
, vol.2
, pp. 475-493
-
-
Stromberg, J.1
-
4
-
-
84990575058
-
Orthogonal bases of compactly supported wavelets
-
I. Daubechies, “Orthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math., vol. XLI, pp. 909–996, 1988.
-
(1988)
Commun. Pure Appl. Math
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
5
-
-
0003611372
-
Complete signal representation with multiscale edges
-
New York Univ., New York, Tech. Rep. 483, Dec.
-
S. G. Mallat and S. Zhong, “Complete signal representation with multiscale edges,” Courant Inst., New York Univ., New York, Tech. Rep. 483, Dec. 1989.
-
(1989)
Courant Inst
-
-
Mallat, S.G.1
Zhong, S.2
-
6
-
-
0026187946
-
Zero-crossing of a wavelet transform
-
S. G. Mallat, “Zero-crossing of a wavelet transform,” IEEE Trans. Informat. Theory, vol. 37, pp. 1019–1033, 1991.
-
(1991)
IEEE Trans. Informat. Theory
, vol.37
, pp. 1019-1033
-
-
Mallat, S.G.1
-
7
-
-
0020191832
-
Image restoration by the method of Convex Projections, Part 1—Theory
-
D. C. Youla and H. Webb, “Image restoration by the method of Convex Projections, Part 1—Theory,” IEEE Trans. Med. Imaging, vol. 1, pp. 81–94, 1982.
-
(1982)
IEEE Trans. Med. Imaging
, vol.1
, pp. 81-94
-
-
Youla, D.C.1
Webb, H.2
-
8
-
-
0026366716
-
The foundations of set theoretic estimation
-
P. L. Combettes and M. R. Civanlar, “The foundations of set theoretic estimation,” ICASSP’91, 2921–2924.
-
ICASSP’91
, pp. 2921-2924
-
-
Combettes, P.L.1
Civanlar, M.R.2
-
9
-
-
0020191820
-
Image restoration by the method of convex projections, Part 2: Applications and numerical results
-
M. I. Sezan and H. Stark, “Image restoration by the method of convex projections, Part 2: Applications and numerical results,” IEEE Trans. Med. Imaging, vol. 1, pp. 95–101, 1982.
-
(1982)
IEEE Trans. Med. Imaging
, vol.1
, pp. 95-101
-
-
Sezan, M.I.1
Stark, H.2
-
10
-
-
0026403175
-
An iterative algorithm for signal reconstruction from bispectrum
-
A. E. Çetin, “An iterative algorithm for signal reconstruction from bispectrum,” IEEE Trans. Signal Processing, vol. 39, pp. 2621–2628, 1991.
-
(1991)
IEEE Trans. Signal Processing
, vol.39
, pp. 2621-2628
-
-
Çetin, A.E.1
-
11
-
-
1842316772
-
Characterization of signals from multiscale edges
-
New York Univ., New York, Tech. Rep. 592, Nov.
-
S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” Courant Inst., New York Univ., New York, Tech. Rep. 592, Nov. 1991.
-
(1991)
Courant Inst
-
-
Mallat, S.1
Zhong, S.2
-
12
-
-
0026686049
-
Singularity detection and processing with wavelets
-
Feb.
-
S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Informat. Theory, vol. 38, pp. 617–643, Feb. 1992.
-
(1992)
IEEE Trans. Informat. Theory
, vol.38
, pp. 617-643
-
-
Mallat, S.1
Hwang, W.L.2
-
13
-
-
2942516108
-
Un contre-example a la conjecture de Marr et a celle de S. Mallat
-
preprint
-
Y. Meyer, “Un contre-example a la conjecture de Marr et a celle de S. Mallat,” preprint, 1991.
-
-
-
Meyer, Y.1
-
14
-
-
84941521937
-
A study on discrete multiscale edge representations
-
Princeton Univ., Princeton, NJ, Mar.
-
Z. Berman and J. S. Baras, “A study on discrete multiscale edge representations,” in Conf. Informat. Sci. and Syst., Princeton Univ., Princeton, NJ, Mar. 1992.
-
(1992)
Conf. Informat. Sci. and Syst.
-
-
Berman, Z.1
Baras, J.S.2
|