-
1
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Feb.
-
L.R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–285, Feb. 1989.
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-285
-
-
Rabiner, L.R.1
-
4
-
-
33644907115
-
Toward a realtime spoken language system using commercial hardware
-
Natural Language Workshop (Hidden Valley, PA), June
-
S. Austin et al., “Toward a realtime spoken language system using commercial hardware,” in Proc. DARPA Speech, Natural Language Workshop (Hidden Valley, PA), June 1990.
-
(1990)
Proc. DARPA Speech
-
-
Austin, S.1
-
5
-
-
84913514854
-
A new HMM/LVQ hybrid algorithm for speech recognition
-
S. Katagiri and C.H. Lee, “A new HMM/LVQ hybrid algorithm for speech recognition,” in Proc. GLOBECOM′90.
-
Proc. GLOBECOM′90
-
-
Katagiri, S.1
Lee, C.H.2
-
6
-
-
84942486478
-
A segment-based speaker adaptation neural network applied to continuous speech recognition
-
(San Francisco, CA), Mar.
-
K. Fukuzawa, Y. Komori, H. Sawai, and M. Sugiyama, “A segment-based speaker adaptation neural network applied to continuous speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (San Francisco, CA), Mar. 1992, pp. 433–446.
-
(1992)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 433-446
-
-
Fukuzawa, K.1
Komori, Y.2
Sawai, H.3
Sugiyama, M.4
-
7
-
-
0347576554
-
Speech recognition using stochastic segment neural networks
-
(San Francisco, CA), Mar.
-
H.C. Leung, I.L. Hetherington, and V. Zue,” Speech recognition using stochastic segment neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (San Francisco, CA), Mar. 1992, pp. 613–616.
-
(1992)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 613-616
-
-
Leung, H.C.1
Hetherington, I.L.2
Zue, V.3
-
8
-
-
0024900279
-
A stochastic segment model for phoneme-based continuous speech recognition
-
Dec.
-
M. Ostendorf and S. Roukos, “A stochastic segment model for phoneme-based continuous speech recognition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1857–1869, Dec. 1989.
-
(1989)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.37
, pp. 1857-1869
-
-
Ostendorf, M.1
Roukos, S.2
-
9
-
-
0027268972
-
The BBN/HARC spoken language understanding system
-
(Minneapolis, MN), Apr.
-
M. Bates et al., “The BBN/HARC spoken language understanding system,” IEEE Int. Conf. Acoust., Speech, Signal Processing (Minneapolis, MN), Apr. 1993.
-
(1993)
IEEE Int. Conf. Acoust., Speech, Signal Processing
-
-
Bates, M.1
-
10
-
-
0024861871
-
Approximations by superpositions of a sigmoidal function
-
Signals and Systems. New York: Springer-Verlag, 1989
-
G. Cybenko, “Approximations by superpositions of a sigmoidal function,” in Mathematics of Control, Signals and Systems. New York: Springer-Verlag, 1989
-
Mathematics of Control
-
-
Cybenko, G.1
-
11
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
T. Poggio and F. Girasi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481–1497, Sept. 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girasi, F.2
-
12
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
H. White, “Learning in artificial neural networks: A statistical perspective,” Neural Computation, pp. 425–464, 1989.
-
(1989)
Neural Computation
, pp. 425-464
-
-
White, H.1
-
13
-
-
0013328359
-
An adaptive pattern classification system
-
Aug.
-
J. Patterson and B. Womack, “An adaptive pattern classification system,” IEEE Trans. Syst., Sci., Cybern., pp. 62–67, Aug. 1966.
-
(1966)
IEEE Trans. Syst., Sci., Cybern.
, pp. 62-67
-
-
Patterson, J.1
Womack, B.2
-
14
-
-
0024935434
-
Statistical properties of artificial neural networks
-
(Tampa, FL)
-
A. Barron, “Statistical properties of artificial neural networks,” in Proc. IEEE Conf. Decision, Control (Tampa, FL), pp. 280–285, 1989.
-
(1989)
Proc. IEEE Conf. Decision, Control
, pp. 280-285
-
-
Barron, A.1
-
15
-
-
0025671510
-
A probabilistic approach to the understanding and training of neural network classifiers
-
Apr.
-
H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Apr. 1990.
-
(1990)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
-
-
Gish, H.1
-
16
-
-
85009890950
-
Connectionist probability estimation in the DECIPHER system
-
(San Francisco, CA), Apr.
-
S. Renals, N. Morgan, M. Cohen, and H. Francom “Connectionist probability estimation in the DECIPHER system,” IEEE Int. Conf. Acoustics, Speech, Signal Processing (San Francisco, CA), Apr. 1992, pp. 601–604.
-
(1992)
IEEE Int. Conf. Acoustics, Speech, Signal Processing
, pp. 601-604
-
-
Renals, S.1
Morgan, N.2
Cohen, M.3
Francom, H.4
-
18
-
-
0001862342
-
Integration of Diverse Recognition Methodologies Through Reevaluation of N-est sentence hypotheses
-
(Pacific Grove, CA), Feb.
-
M. Ostendorf et al., “Integration of Diverse Recognition Methodologies Through Reevaluation of N-est sentence hypotheses,” in Proc. DARPA Speech, Natural Language Workshop (Pacific Grove, CA), Feb. 1991.
-
(1991)
Proc. DARPA Speech, Natural Language Workshop
-
-
Ostendorf, M.1
-
19
-
-
85017310294
-
New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system
-
(San Francisco, CA), Mar.
-
R. Schwartz et al., “New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system,” IEEE Int. Conf. Acoust., Speech, Signal Processing (San Francisco, CA), Mar. 1992, pp. 1–4.
-
(1992)
IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 1-4
-
-
Schwartz, R.1
-
20
-
-
0025627406
-
The N-Best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses
-
(Albuquerque, NM), Apr.
-
R. Schwartz and Y.L. Chow, “The N-Best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses,” IEEE Int. Conf. Acoust., Speech. Signal Processing (Albuquerque, NM), Apr. 1990, pp. 81–84.
-
(1990)
IEEE Int. Conf. Acoust., Speech. Signal Processing
, pp. 81-84
-
-
Schwartz, R.1
Chow, Y.L.2
-
21
-
-
0026390882
-
A comparison of several approximate algorithms for finding multiple (N-best) sentence hypotheses
-
(Toronto, Ont.), May
-
R. Schwartz and S. Austin, “A comparison of several approximate algorithms for finding multiple (N-best) sentence hypotheses,” IEEE Int. Conf. Acoust., Speech, Signal Processing (Toronto, Ont.), May 1991, pp. 701–704.
-
(1991)
IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 701-704
-
-
Schwartz, R.1
Austin, S.2
-
22
-
-
0023776398
-
The DARPA 1000-word resource management database for continuous speech recognition
-
(New York), Apr.
-
P. Price, W. Fischer, J. Bernstein, and D. Pallett, “The DARPA 1000-word resource management database for continuous speech recognition,” IEEE Int. Conf. Acoust., Speech, Signal Processing (New York), Apr. 1988, pp. 651–654.
-
(1988)
IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 651-654
-
-
Price, P.1
Fischer, W.2
Bernstein, J.3
Pallett, D.4
-
23
-
-
0025547056
-
A new error criterion for posterior probability estimation with neural nets
-
(San Diego, CA), June
-
A. El-Jaroudi and J. Makhoul, “A new error criterion for posterior probability estimation with neural nets,” Int. Joint Conf. Neural Networks (San Diego, CA), vol. DJ, June 1990, pp. 185–192.
-
(1990)
Int. Joint Conf. Neural Networks
, vol.DJ
, pp. 185-192
-
-
El-Jaroudi, A.1
Makhoul, J.2
-
25
-
-
0021142214
-
Improved hidden Markov modeling of phonemes for continuous speech recognition
-
(San Diego, CA), Mar.
-
R. Schwartz, Y.L. Chow, S. Roucos, M. Krasner, and J. Makhoul, “Improved hidden Markov modeling of phonemes for continuous speech recognition,” IEEE Int. Conf. Acoust., Speech, Signal Processing (San Diego, CA), Mar. 1984, pp. 35.6.1–35.6.4.
-
(1984)
IEEE Int. Conf. Acoust., Speech, Signal Processing
, pp. 35.6.1-35.6.4.
-
-
Schwartz, R.1
Chow, Y.L.2
Roucos, S.3
Krasner, M.4
Makhoul, J.5
-
27
-
-
0000902690
-
The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems
-
J.E. Moody, S.J. Hanson, and R.P. Lippman, Eds. San Francisco, CA: Morgan Kaufmann
-
J. Moody, “The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems,” Advances in Neural Information Processing Syst. 4, J.E. Moody, S.J. Hanson, and R.P. Lippman, Eds. San Francisco, CA: Morgan Kaufmann, 1991.
-
(1991)
Advances in Neural Information Processing Syst. 4
-
-
Moody, J.1
-
29
-
-
0024991997
-
Networks and the best approximation property
-
F. Girosi and T. Poggio, “Networks and the best approximation property,” Biological Cybernetics, vol. 63, pp. 169–176, 1990.
-
(1990)
Biological Cybernetics
, vol.63
, pp. 169-176
-
-
Girosi, F.1
Poggio, T.2
-
30
-
-
0024933821
-
Universal approximation using feedforward networks with nonsigmoidal hidden layer activation functions
-
(Washington, DC), June
-
M. Stinchcombe and H. White, “Universal approximation using feedforward networks with nonsigmoidal hidden layer activation functions,” in Proc. Int. Joint Conf. Neural Networks (Washington, DC), June 1989, pp. I-607-I-611.
-
(1989)
Proc. Int. Joint Conf. Neural Networks
, pp. I-607-I-611.
-
-
Stinchcombe, M.1
White, H.2
-
31
-
-
84942486537
-
Robust smoothing methods for discrete hidden Markov models
-
(San Diego, CA), Mar.
-
R. Schwartz et al., “Robust smoothing methods for discrete hidden Markov models,” in Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing (San Diego, CA), Mar. 1984, pp. 35.6.1–35.6.4.
-
(1984)
Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing
, pp. 35.6.1-35.6.4.
-
-
Schwartz, R.1
-
32
-
-
33845954910
-
BYBLOS speech recognition benchmark results
-
(Pacific Grove, CA), Feb.
-
F. Kubala et al., “BYBLOS speech recognition benchmark results,” in Proc. DARPA Speech, Natural Language Workshop (Pacific Grove, CA), Feb. 1991.
-
(1991)
Proc. DARPA Speech, Natural Language Workshop
-
-
Kubala, F.1
-
33
-
-
84942485885
-
Resource management corpus: Sept. 1992 test set benchmark test results
-
(Stanford University, CA), Sept.
-
D.S. Pallet, J.G. Fiscus, and J.S. Garofolo, “Resource management corpus: Sept. 1992 test set benchmark test results,” ARPA Continuous Speech Recognition Workshop (Stanford University, CA), Sept. 1992, pp. 1–18.
-
(1992)
ARPA Continuous Speech Recognition Workshop
, pp. 1-18
-
-
Pallet, D.S.1
Fiscus, J.G.2
Garofolo, J.S.3
|