메뉴 건너뛰기




Volumn 2, Issue 1, 1994, Pages 151-160

A Hybrid Segmental Neural Net/Hidden Markov Model System for Continuous Speech Recognition

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS;

EID: 0028288775     PISSN: 10636676     EISSN: None     Source Type: Journal    
DOI: 10.1109/89.260358     Document Type: Letter
Times cited : (40)

References (33)
  • 1
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb.
    • L.R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–285, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.R.1
  • 4
    • 33644907115 scopus 로고
    • Toward a realtime spoken language system using commercial hardware
    • Natural Language Workshop (Hidden Valley, PA), June
    • S. Austin et al., “Toward a realtime spoken language system using commercial hardware,” in Proc. DARPA Speech, Natural Language Workshop (Hidden Valley, PA), June 1990.
    • (1990) Proc. DARPA Speech
    • Austin, S.1
  • 5
    • 84913514854 scopus 로고    scopus 로고
    • A new HMM/LVQ hybrid algorithm for speech recognition
    • S. Katagiri and C.H. Lee, “A new HMM/LVQ hybrid algorithm for speech recognition,” in Proc. GLOBECOM′90.
    • Proc. GLOBECOM′90
    • Katagiri, S.1    Lee, C.H.2
  • 6
    • 84942486478 scopus 로고
    • A segment-based speaker adaptation neural network applied to continuous speech recognition
    • (San Francisco, CA), Mar.
    • K. Fukuzawa, Y. Komori, H. Sawai, and M. Sugiyama, “A segment-based speaker adaptation neural network applied to continuous speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (San Francisco, CA), Mar. 1992, pp. 433–446.
    • (1992) Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing , pp. 433-446
    • Fukuzawa, K.1    Komori, Y.2    Sawai, H.3    Sugiyama, M.4
  • 8
    • 0024900279 scopus 로고
    • A stochastic segment model for phoneme-based continuous speech recognition
    • Dec.
    • M. Ostendorf and S. Roukos, “A stochastic segment model for phoneme-based continuous speech recognition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1857–1869, Dec. 1989.
    • (1989) IEEE Trans. Acoust., Speech, Signal Processing , vol.37 , pp. 1857-1869
    • Ostendorf, M.1    Roukos, S.2
  • 9
    • 0027268972 scopus 로고
    • The BBN/HARC spoken language understanding system
    • (Minneapolis, MN), Apr.
    • M. Bates et al., “The BBN/HARC spoken language understanding system,” IEEE Int. Conf. Acoust., Speech, Signal Processing (Minneapolis, MN), Apr. 1993.
    • (1993) IEEE Int. Conf. Acoust., Speech, Signal Processing
    • Bates, M.1
  • 10
    • 0024861871 scopus 로고    scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • Signals and Systems. New York: Springer-Verlag, 1989
    • G. Cybenko, “Approximations by superpositions of a sigmoidal function,” in Mathematics of Control, Signals and Systems. New York: Springer-Verlag, 1989
    • Mathematics of Control
    • Cybenko, G.1
  • 11
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sept.
    • T. Poggio and F. Girasi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481–1497, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girasi, F.2
  • 12
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White, “Learning in artificial neural networks: A statistical perspective,” Neural Computation, pp. 425–464, 1989.
    • (1989) Neural Computation , pp. 425-464
    • White, H.1
  • 14
    • 0024935434 scopus 로고
    • Statistical properties of artificial neural networks
    • (Tampa, FL)
    • A. Barron, “Statistical properties of artificial neural networks,” in Proc. IEEE Conf. Decision, Control (Tampa, FL), pp. 280–285, 1989.
    • (1989) Proc. IEEE Conf. Decision, Control , pp. 280-285
    • Barron, A.1
  • 15
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Apr.
    • H. Gish, “A probabilistic approach to the understanding and training of neural network classifiers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Apr. 1990.
    • (1990) Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
    • Gish, H.1
  • 18
    • 0001862342 scopus 로고
    • Integration of Diverse Recognition Methodologies Through Reevaluation of N-est sentence hypotheses
    • (Pacific Grove, CA), Feb.
    • M. Ostendorf et al., “Integration of Diverse Recognition Methodologies Through Reevaluation of N-est sentence hypotheses,” in Proc. DARPA Speech, Natural Language Workshop (Pacific Grove, CA), Feb. 1991.
    • (1991) Proc. DARPA Speech, Natural Language Workshop
    • Ostendorf, M.1
  • 19
    • 85017310294 scopus 로고
    • New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system
    • (San Francisco, CA), Mar.
    • R. Schwartz et al., “New uses for the N-best sentence hypotheses within the BYBLOS speech recognition system,” IEEE Int. Conf. Acoust., Speech, Signal Processing (San Francisco, CA), Mar. 1992, pp. 1–4.
    • (1992) IEEE Int. Conf. Acoust., Speech, Signal Processing , pp. 1-4
    • Schwartz, R.1
  • 20
    • 0025627406 scopus 로고
    • The N-Best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses
    • (Albuquerque, NM), Apr.
    • R. Schwartz and Y.L. Chow, “The N-Best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses,” IEEE Int. Conf. Acoust., Speech. Signal Processing (Albuquerque, NM), Apr. 1990, pp. 81–84.
    • (1990) IEEE Int. Conf. Acoust., Speech. Signal Processing , pp. 81-84
    • Schwartz, R.1    Chow, Y.L.2
  • 21
    • 0026390882 scopus 로고
    • A comparison of several approximate algorithms for finding multiple (N-best) sentence hypotheses
    • (Toronto, Ont.), May
    • R. Schwartz and S. Austin, “A comparison of several approximate algorithms for finding multiple (N-best) sentence hypotheses,” IEEE Int. Conf. Acoust., Speech, Signal Processing (Toronto, Ont.), May 1991, pp. 701–704.
    • (1991) IEEE Int. Conf. Acoust., Speech, Signal Processing , pp. 701-704
    • Schwartz, R.1    Austin, S.2
  • 23
    • 0025547056 scopus 로고
    • A new error criterion for posterior probability estimation with neural nets
    • (San Diego, CA), June
    • A. El-Jaroudi and J. Makhoul, “A new error criterion for posterior probability estimation with neural nets,” Int. Joint Conf. Neural Networks (San Diego, CA), vol. DJ, June 1990, pp. 185–192.
    • (1990) Int. Joint Conf. Neural Networks , vol.DJ , pp. 185-192
    • El-Jaroudi, A.1    Makhoul, J.2
  • 27
    • 0000902690 scopus 로고
    • The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems
    • J.E. Moody, S.J. Hanson, and R.P. Lippman, Eds. San Francisco, CA: Morgan Kaufmann
    • J. Moody, “The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems,” Advances in Neural Information Processing Syst. 4, J.E. Moody, S.J. Hanson, and R.P. Lippman, Eds. San Francisco, CA: Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Syst. 4
    • Moody, J.1
  • 29
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • F. Girosi and T. Poggio, “Networks and the best approximation property,” Biological Cybernetics, vol. 63, pp. 169–176, 1990.
    • (1990) Biological Cybernetics , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 30
    • 0024933821 scopus 로고
    • Universal approximation using feedforward networks with nonsigmoidal hidden layer activation functions
    • (Washington, DC), June
    • M. Stinchcombe and H. White, “Universal approximation using feedforward networks with nonsigmoidal hidden layer activation functions,” in Proc. Int. Joint Conf. Neural Networks (Washington, DC), June 1989, pp. I-607-I-611.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. I-607-I-611.
    • Stinchcombe, M.1    White, H.2
  • 31
    • 84942486537 scopus 로고
    • Robust smoothing methods for discrete hidden Markov models
    • (San Diego, CA), Mar.
    • R. Schwartz et al., “Robust smoothing methods for discrete hidden Markov models,” in Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing (San Diego, CA), Mar. 1984, pp. 35.6.1–35.6.4.
    • (1984) Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing , pp. 35.6.1-35.6.4.
    • Schwartz, R.1
  • 32
    • 33845954910 scopus 로고
    • BYBLOS speech recognition benchmark results
    • (Pacific Grove, CA), Feb.
    • F. Kubala et al., “BYBLOS speech recognition benchmark results,” in Proc. DARPA Speech, Natural Language Workshop (Pacific Grove, CA), Feb. 1991.
    • (1991) Proc. DARPA Speech, Natural Language Workshop
    • Kubala, F.1
  • 33
    • 84942485885 scopus 로고
    • Resource management corpus: Sept. 1992 test set benchmark test results
    • (Stanford University, CA), Sept.
    • D.S. Pallet, J.G. Fiscus, and J.S. Garofolo, “Resource management corpus: Sept. 1992 test set benchmark test results,” ARPA Continuous Speech Recognition Workshop (Stanford University, CA), Sept. 1992, pp. 1–18.
    • (1992) ARPA Continuous Speech Recognition Workshop , pp. 1-18
    • Pallet, D.S.1    Fiscus, J.G.2    Garofolo, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.