-
1
-
-
0024750852
-
Learnability and the Vapnik Chervonenkis dimension
-
Oct.
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learnability and the Vapnik—Chervonenkis dimension,” J. Ass. Comput. Mach., vol. 36, no. 4, pp. 929-965, Oct. 1989.
-
(1989)
J. Ass. Comput. Mach.
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
2
-
-
0000539898
-
How tight are the Vapnik-Chervonenkis bounds?
-
Mar.
-
D. Cohn and G. Tesauro, “How tight are the Vapnik—Chervonenkis bounds?” Neural Computation, vol. 4, no. 2, pp. 249-270, Mar. 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 249-270
-
-
Cohn, D.1
Tesauro, G.2
-
3
-
-
84943298288
-
Separating formal bounds from practical performance in learning systems
-
Dept. Comput. Sci. Eng., Univ. of Washington, Seattle
-
D. Cohn, “Separating formal bounds from practical performance in learning systems,” Ph.D. dissertation, Dept. Comput. Sci. Eng., Univ. of Washington, Seattle, 1992.
-
(1992)
Ph.D. dissertation
-
-
Cohn, D.1
-
4
-
-
0026297668
-
Training sequence size and vector quantizer performance
-
Nov.
-
P. Cosman, K. Perlmutter, S. Perlmutter, R. A. Olshen, and R. M. Gray, “Training sequence size and vector quantizer performance,” in Proc. 25th Asilomar Conf. Signals, Syst., Comput., Asilomar, CA, Nov. 1991, pp. 434-438.
-
(1991)
Proc. 25th Asilomar Conf. Signals, Syst., Comput., Asilomar, CA
, pp. 434-438
-
-
Cosman, P.1
Perlmutter, K.2
Perlmutter, S.3
Olshen, R.A.4
Gray, R.M.5
-
8
-
-
0021412027
-
Vector quantization
-
Apr. 1
-
R. M. Gray, “Vector quantization,” IEEE ASSP Mag., vol. 1, pp. 4-29, Apr. 1984.
-
(1984)
IEEE ASSP Mag
, pp. 4-29
-
-
Gray, R.M.1
-
9
-
-
0006842954
-
Unifying bounds on the sample complexity of Bayesian learning theory using information theory and the VC dimension
-
San Mateo, CA: Morgan Kaufmann
-
D. Haussler, M. Kearns, and R. Schapire, “Unifying bounds on the sample complexity of Bayesian learning theory using information theory and the VC dimension,” in Proc. 4th Annual Workshop Computational Learning Theory. San Mateo, CA: Morgan Kaufmann, 1991, pp. 61-74.
-
(1991)
Proc. 4th Annual Workshop Computational Learning Theory
, pp. 61-74
-
-
Haussler, D.1
Kearns, M.2
Schapire, R.3
-
10
-
-
0014698310
-
Analysis synthesis telephony based on the maximum likelihood method
-
F. Itakura and S. Saito, “Analysis synthesis telephony based on the maximum likelihood method,” in Proc. 6th Int. Congress Acoustics, Tokyo, Japan. New York: Elsevier, 1968, pp. c17—c20.
-
Proc. 6th Int. Congress Acoustics
, pp. c17-c20
-
-
Itakura, F.1
Saito, S.2
-
11
-
-
0026993999
-
F-approximations with minimum constraint violation
-
Victoria, Canada, May
-
J. Lin and J. Vitter, “F-approximations with minimum constraint violation,” in Prot. 24th Annual ACM Symp. Theory of Computing, Victoria, Canada, May 1992, pp. 771-782.
-
(1992)
Prot. 24th Annual ACM Symp. Theory of Computing
, pp. 771-782
-
-
Lin, J.1
Vitter, J.2
-
12
-
-
0018918171
-
An algorithm for vector quantizer design
-
Jan.
-
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan. 1980.
-
(1980)
IEEE Trans. Commun.
, vol.COM-28
, pp. 84-95
-
-
Linde, Y.1
Buzo, A.2
Gray, R.M.3
-
14
-
-
0000963885
-
A central limit theorem for k-means clustering
-
D. Pollard, “A central limit theorem for k-means clustering,” Annals Probability, vol. 10, no. 4, pp. 919-926, 1982.
-
(1982)
Annals Probability
, vol.10
, Issue.4
, pp. 919-926
-
-
Pollard, D.1
-
17
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory of Probability and its Applications, vol. 16, no. 2, pp. 264-280, 1971.
-
(1971)
Theory of Probability and its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.1
Chervonenkis, A.2
-
20
-
-
84944994729
-
Rates of convergence in the source coding theorem
-
to be published.
-
T. Linder, G. Lugosi, and K. Zeger, Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding,” IEEE Trans. Inform. Theory; to be published.
-
IEEE Trans. Inform. Theory
-
-
Linder, T.1
Lugosi, G.2
Zeger, K.3
|