메뉴 건너뛰기




Volumn 5, Issue 1, 1994, Pages 54-65

An Evolutionary Algorithm that Constructs Recurrent Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER ARCHITECTURE; COMPUTER PROGRAMMING; CONSTRAINT THEORY; DATA ACQUISITION; ELECTRIC NETWORK TOPOLOGY; ONLINE SEARCHING;

EID: 0028202641     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.265960     Document Type: Article
Times cited : (873)

References (48)
  • 1
    • 0002355083 scopus 로고
    • Connectionist learning for control
    • W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press
    • A. G. Barto, “Connectionist learning for control,” in Neural Networks for Control, W. T. Miller III, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1990, pp. 5–58.
    • (1990) Neural Networks for Control , pp. 5-58
    • Barto, A.G.1
  • 2
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • T. Ash, “Dynamic node creation in backpropagation networks,” Connection Science, vol. 1, no. 4, pp. 365–375, 1989.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 3
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feed-forward neural networks
    • Technical Report Preprint 89/469, Edinburgh Physics Dept
    • M. Frean, “The upstart algorithm: A method for constructing and training feed-forward neural networks,” Technical Report Preprint 89/469, Edinburgh Physics Dept, 1990.
    • (1990)
    • Frean, M.1
  • 4
    • 0000028318 scopus 로고
    • Meiosis networks
    • D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. J. Hanson, “Meiosis networks,” in Advances in Neural Information Processing Systems 2, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 533–541.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 533-541
    • Hanson, S.J.1
  • 5
    • 0000155950 scopus 로고
    • The cascade-correlation architecture
    • D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Lebiere, “The cascade-correlation architecture,” in Advances in Neural Information Processing Systems 2, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, 524–532.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 6
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Fahlman, “The recurrent cascade-correlation architecture,” In Advances in Neural Information Processing System 3, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 190–196.
    • (1991) Advances in Neural Information Processing System 3 , pp. 190-196
    • Fahlman, S.1
  • 9
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • M. Mozer and P. Smolensky, “Skeletonization: A technique for trimming the fat from a network via relevance assessment,” in Advances in Neural Information Processing Systems 1, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 107–115.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 107-115
    • Mozer, M.1    Smolensky, P.2
  • 11
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
    • B. Hassibi and D. G. Stork, “Second order derivatives for network pruning: Optimal brain surgeon,” in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164–171.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 12
    • 0344314968 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • Tech. Report No. 93–6, Computer Science Department, Rensselaer Polytechnic Institute, April
    • C. W. Omlin and C. L. Giles, “Pruning recurrent neural networks for improved generalization performance,” Tech. Report No. 93–6, Computer Science Department, Rensselaer Polytechnic Institute, April 1993.
    • (1993)
    • Omlin, C.W.1    Giles, C.L.2
  • 13
    • 0003806013 scopus 로고
    • Artificial Intelligence through Simulated Evolution
    • New York: John Wiley & Sons
    • L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution, New York: John Wiley & Sons, 1966.
    • (1966)
    • Fogel, L.J.1    Owens, A.J.2    Walsh, M.J.3
  • 14
    • 0004242363 scopus 로고
    • Evolving artificial intelligence
    • Ph.D. thesis, University of California, San Diego
    • D. B. Fogel, “Evolving artificial intelligence,” Ph.D. thesis, University of California, San Diego, 1992.
    • (1992)
    • Fogel, D.B.1
  • 18
    • 0026626840 scopus 로고
    • Evolving neural network controllers for unstable systems
    • Seattle, WA: IEEE Press
    • A. P. Wieland, “Evolving neural network controllers for unstable systems,” in IEEE International Joint Conference on Neural Networks, Seattle, WA: IEEE Press, 1990, pp. II-667-II-673.
    • (1990) IEEE International Joint Conference on Neural Networks
    • Wieland, A.P.1
  • 20
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural networks: Optimizing connections and connectivity,” Parallel Computing, vol. 14, pp. 347–361, 1990.
    • (1990) Parallel Computing , vol.14 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 21
    • 84977052581 scopus 로고
    • Evolving dynamical neural networks for adaptive behavior
    • R. D. Beer and J. C. Gallagher, “Evolving dynamical neural networks for adaptive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.
    • (1992) Adaptive Behavior , vol.1 , Issue.1 , pp. 91-122
    • Beer, R.D.1    Gallagher, J.C.2
  • 23
    • 0002279798 scopus 로고
    • Evolving networks: Using the genetic algorithm with connectionist learning
    • C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-Wesley
    • R. K. Belew, J. McInemey, and N. N. Schraudolf, “Evolving networks: Using the genetic algorithm with connectionist learning,” in Artificial Life II: Proceedings of the Workshop on Artificial Life, C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-Wesley, 1992, pp. 511–547.
    • (1992) Artificial Life II: Proceedings of the Workshop on Artificial Life , pp. 511-547
    • Belew, R.K.1    McInemey, J.2    Schraudolf, N.N.3
  • 24
    • 0003380928 scopus 로고
    • Temporal processing with recurrent networks: An evolutionary approach
    • R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan Kaufmann
    • J. Torreele, “Temporal processing with recurrent networks: An evolutionary approach,” in Fourth International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan Kaufmann, 1991, 555–561.
    • (1991) Fourth International Conference on Genetic Algorithms , pp. 555-561
    • Torreele, J.1
  • 27
    • 0000473160 scopus 로고
    • Genetic algorithms and Walsh functions: Part 2, Deception and its analysis
    • D. E. Goldberg, “Genetic algorithms and Walsh functions: Part 2, Deception and its analysis,” Complex Systems vol. 3, pp. 153–171, 1989.
    • (1989) Complex Systems , vol.3 , pp. 153-171
    • Goldberg, D.E.1
  • 28
    • 0000473160 scopus 로고
    • Genetic algorithms and Walsh functions: Part 1, A gentle introduction
    • D. E. Goldberg, “Genetic algorithms and Walsh functions: Part 1, A gentle introduction,” Complex Systems, vol. 3, pp. 129–152, 1989.
    • (1989) Complex Systems , vol.3 , pp. 129-152
    • Goldberg, D.E.1
  • 31
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce english text
    • T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to pronounce english text,” Complex Systems, vol. 1, pp. 145–168, 1987.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 32
    • 0000787992 scopus 로고
    • Genetic generation of both the weights and architecture for a neural network
    • Seattle, WA: IEEE Press
    • J. Koza and J. Rice, “Genetic generation of both the weights and architecture for a neural network,” in IEEE International Joint Conference on Neural Networks. Seattle, WA: IEEE Press, 1991, pp. II-397-II-404.
    • (1991) IEEE International Joint Conference on Neural Networks
    • Koza, J.1    Rice, J.2
  • 33
    • 0042814015 scopus 로고
    • An artificial neural network representation for artificial organisms
    • H. P. Schwefel and R. Manner, Eds. Heidelberg: Springer-Verlag
    • R. Collins and D. Jefferson, “An artificial neural network representation for artificial organisms,” in Parallel Problem Solving from Nature, H. P. Schwefel and R. Manner, Eds. Heidelberg: Springer-Verlag, 1991.
    • (1991) Parallel Problem Solving from Nature
    • Collins, R.1    Jefferson, D.2
  • 34
    • 84901447458 scopus 로고
    • A brief history of simulated evolution
    • D. B. Fogel and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society
    • D. B. Fogel, “A brief history of simulated evolution,” in Proceedings of the First Annual Conference on Evolutionary Programming, D. B. Fogel and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society, 1992.
    • (1992) Proceedings of the First Annual Conference on Evolutionary Programming
    • Fogel, D.B.1
  • 37
    • 84943227555 scopus 로고
    • Using evolutionary programming to create neural networks that are capable of playing Tic-Tac-Toe
    • San Francisco, CA: IEEE Press
    • D. B. Fogel, “Using evolutionary programming to create neural networks that are capable of playing Tic-Tac-Toe,” in International Conference on Neural Networks, San Francisco, CA: IEEE Press, 1993, pp. 875–880.
    • (1993) International Conference on Neural Networks , pp. 875-880
    • Fogel, D.B.1
  • 38
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671–680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 40
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • J. B. Pollack, “The induction of dynamical recognizers,” Machine Learning, vol. 7, pp. 227–252, 1991.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 42
    • 0000032536 scopus 로고
    • Induction of finite-state automata using second-order recurrent networks
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • R. L. Watrous and G. M. Kuhn, “Induction of finite-state automata using second-order recurrent networks,” in Advances in Neural Information Processing 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 309–316.
    • (1992) Advances in Neural Information Processing 4 , pp. 309-316
    • Watrous, R.L.1    Kuhn, G.M.2
  • 43
    • 0000718697 scopus 로고
    • Higher order recurrent networks & grammatical inference
    • D. S. Touretsky, Ed. San Mateo, CA: Morgan Kaufmann
    • C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen, “Higher order recurrent networks & grammatical inference,” in Advances in Neural Information Processing Systems 2, D. S. Touretsky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 380–387.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 380-387
    • Giles, C.L.1    Sun, G.Z.2    Chen, H.H.3    Lee, Y.C.4    Chen, D.5
  • 44
    • 0000651312 scopus 로고
    • Extracting and learning an unknown grammar with recurrent neural networks
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee, “Extracting and learning an unknown grammar with recurrent neural networks,” in Advances in Neural Information Processing 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 317–324.
    • (1992) Advances in Neural Information Processing 4 , pp. 317-324
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Sun, G.Z.4    Chen, H.H.5    Lee, Y.C.6
  • 45
    • 0000003489 scopus 로고    scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • in press.
    • Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite state machines with self-clustering recurrent networks,” Neural Computation, in press.
    • Neural Computation
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3
  • 47
    • 0001334736 scopus 로고
    • Genetic evolution and co-evolution of computer programs
    • C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reaading, MA: Addison-Wesley
    • J. Koza, “Genetic evolution and co-evolution of computer programs,” in Artificial Life II: Proceedings of the Workshop on Artificial Life, C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reaading, MA: Addison-Wesley, 1992, pp. 603–629.
    • (1992) Artificial Life II: Proceedings of the Workshop on Artificial Life , pp. 603-629
    • Koza, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.